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CHAPTER 1

INFLUENCE OF WALL THICKNESS ON RAYLEIGH CONDUCTIVITY

M. S. Howe
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SUMMARY

A theoretical investigation is made of the effect of finite wall
thickness on the interaction of a pressure perturbation, produced by sound or
large scale structural vibration, with a wall aperture in the presence of a
tangential mean flow. Previous analyses for a wall of infinitesimal thickness
(Howe, Scott & Sipcic 1996) indicate that the perturbation is damped during
the interaction if the Strouhal number based on aperture diameter and mean
velocity is small. The damping is caused by the transfer of energy to the
mean flow via the production of vorticity in the aperture. We show that the
damping at low Strouhal numbers is unchanged when the wall has small, but
finite thickness, characteristic of real structures. However, wall thickness
has a substantial influence on flow stability and on the excitation of
self-sustained oscillations of fluid in the aperture. Instabilities exist
when the Rayleigh conductivity K, (w) of the aperture at frequency w possesses
poles in the upper w-plane (an instability frequency being equal to the real
part of w at a pole); increasing wall thickness exacerbates the tendency
towards instability by causing poles initially in the lower half plane to
cross the real axis. Detailed results are given for two-sided flow which (for
an ideal fluid) is stable for a wall of zero thickness when the flow speed is
the same on both sides, and for one-sided flow over an aperture, which is
unstable for arbitrary wall thickness. 1In both cases the instability
frequencies are shown to progressively decrease as the wall thickness
increases, but externally forced motion at low Strouhal numbers is always

damped.
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1. INTRODUCTION

Narrow band acoustic tones are frequently generated by nominally steady,
high Reynolds number flow over cavities and wall apertures (Rockwell 1983).
The tones are associated with distinct "operating stages", each of which
corresponds to a continuous range of Strouhal numbers governed by a feedback
mechanism involving the periodic shedding of vorticity and its convection over
the aperture or cavity opening (Rossiter 1962). Feedback occurs via impulsivé
pressures produced by the impingement of the vorticity on a downstream edge.
The tonal amplitude varies with flow speed and exhibits abrupt, hysteretic
jumps between stages. Empirical formulae for the differentjstages and their
Strouhal number ranges are well known (Rossiter 1962; East 1966; Heller and
Bliss 1975; Komerath et al 1987; Ahuja and Mendoza 1995), although a general
theory valid at arbitrary Mach number is still lacking (Tam and Block 1978;
Bruggeman 1987; Bruggeman et al 1989; Peters 1993; Hardin and Pope 1995;
Kriesels et al 1995).

A deductive theory of the resonance stages has been proposed by Howe
(1997) for low Mach number, high Reynolds number flows, in situations where
the wavelength of the generated sound is always large compared to the cavity
or aperture diameter. This theory identifies the Strouhal numbers.of the
operating stages with the real parts of poles in the (upper) complex frequency
plane of a certain impulse response function, which is equal to the Rayleigh
conductivity for wall apertures and to an unsteady drag coefficient for
shallow wall cavities. The response function is calculated on the basis of
perturbation theory, in which the shear layer over the aperture or cavity is
modeled by a linearly disturbed vortex sheet. Nonlinear factors must be
invoked to limit the growth of instabilities predicted by this approach, but
it is argued that finite amplitude motion of the shear layer does not
significantly change the linear theory prediction of the resonance
frequencies, which depend on the convection velocity U, of disturbances within
the shear layer. This hypothesis appears to be justified by experiments,
which suggest that U  is effectively independent of amplitude (Powell 1961;
Holger et al 1977; Blake and Powell 1986). Indeed, Howe (1997) obtains
excellent agreement between predictions of this type of linear theory and

published data for edge and cavity tones.
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The analysis of Howe (1997) of the stability of flow over a rectangular
aperture is applicable only for a wall of infinitesimal thickness, and was an
extension of earlier, numerical studies for a circular aperture in a thin wall
(Scott 1995; Howé, Scott and Sipcic 1996). 1In applications involving, say,
sound waves incident on a perforated screen in the presence of mean flow, the
wall thickness is not necessarily negligible compared to the aperture
diameter. The zero-thickness approximation predicts that acoustic energy is
always absorbed during such interactions (by transformation to the kinetic
energy of vorticity generated at aperture edges) provided the Strouhal number
based on aperture dimension and the mean flow speed is small. Vibrational
energy can be absorbed by the same mechanism during tangential flow over a
vibrating perforated plate (see Chapter 6 and Maung and Howe 1997). 1In all
such cases it is clearly desirable to incorporate the influence of finite wall

thickness directly into the damping prediction scheme.

In this chapter we do this for a rectangular aperture in a wall of small,
but finite thickness by generalizing the method of Howe (1997). Predictions
are given for cases involving mean flow on one or both sides of the wall at
very high Reynolds number, when free shear layers may be modeled by vortex
sheets. For an infinitely thin wall the flow is stable when the mean flow is
the same on both sides (such that, for an ideal fluid, the mean vorticity
vanishes in the steady state; see Howe, Scott and Sipcic 1996); we demonstrate
how this flow is destabilized by finite wall thickness by tracing the motions
of poles of the Rayleigh conductivity from the lower to the upper halves of
the complex frequency plane as wall thickness increases from zero. For
one-sided flow (when the aperture is spanned by a plane vortex sheet in the
undisturbed state), increasing wall thickness ultimately causes the Strouhal
numbers of different instability stages to decrease to a common value,
although the hypotheses of our thin wall approximation are strictly invalid

when the wall thickness becomes comparable to the aperture diameter.

The analytical model for a wall of small, but finite thickness is
formulated in §2, for a rectangular aperture in the presence of an arbitrary,
two-sided, low Mach number, high Reynolds number flow. Specific results are

given in §§3, 4 respectively for two-sided uniform flow and one sided flow.
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2. THE GOVERNING EQUATIONS
2.1 The Rayleigh conductivity

Consider high Reynolds number grazing flow at infinitesimal Mach number
of fluid of uniform mean density p_ over both sides of a rectangular aperture
in a plane, rigid wall of thickness d. The midplane of the wall is taken to

coincide with the plane x, = 0 of the rectangular coordinate system

2

(xl,x Xa)’ whose origin is at the geometrical center of the aperture. The

2 3

mean flow is parallel to the x -axis with mean stream velocities U  and U_ in

the "upper" and "lower" region; X, Z i%d respectively (see Figure 1). The
aperture is aligned with sides of length L parallel to the mean flow and of
length b in the transverse (x,-) direction, so that the upper and lower
openings occupy |x,| <s = %L, X, = i%d, x| < %b. The shear layer over each
opening is modeled by a vortex sheet, and the fluid within the volume of the

aperture (in |x,| < %d) is assumed to be in a mean state of rest.

Let uniform, small amplitude, time-dependent pressures p,(t) be applied
in the vicinity of the aperture respectively in the upper and lower regions,
and suppose the resulting motion of the vortex sheets is adequately described
by linear perturbation theory. The motion produces a volume flux Q(t) through
the aperture that is related to the applied pressure jump '

[p, ()] = p,(t) - p_(t)
by

p,8Q(E) /8t = [ K (@) [p, ()]e HF aw, (2.1)

where K (w) is the Rayleigh conductivity (Rayleigh 1945), which is a function
of the radian frequency w with the dimensions of length, and

[p, ()] = (1/2m)[7, [p, (£)]e* dt

is the Fourier transform of [po(t)].

The instantaneous rate at which energy is dissipated at the aperture by
the applied pressure field is Il = -Q(t)[po(t)], which is just the net rate of
working of the applied pressure forces on the aperture. For time-harmonic
fluctuations, where [p_(t)] = Re{[po(w)]e'iwt}, equation (2.1) enables I to be
expressed in the time-averaged form

M(w) = -|[p,11%Im(K, (w)}/2p & (0 > 0). (2.2)
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At high Reynolds number, when thermo-viscous losses are negligible,
dissipation is the result of the direct transfer of energy from tﬁe applied
pressure (an incident sound wave, say) to the kinetic energy of the mean flow.
According to (2.2) this is the case provided Im{KR(w)) <0 (for w > 0).
Negative damping occurs if Im{K (w)} > 0, when energy is extracted from the
mean flow. For a compressible fluid Q represents the effective acoustic
monopole source strength of the aperture, and a net gain in perturbation

energy would be radiated as sound on either side of the wall.

These conclusions are applicable strictly for real values of the radian
frequency w. Equation (2.1) determines the volume flux resulting from the
applied pressure differential [p (t)], and a strictly causal evaluation of the
integral demands that the path of integration from w = *® should pass above
all singularities of the integrand in the complex frequency plane. Since the
applied pressure may be assumed to vanish prior to some finite time in the
past, [p (w)] is regular in Im{w} > 0, and any singularities are associated
with the conductivity KR(w). According to Howe (1997), these singularitieé
are simple poles for one-sided mean flow (when U_ = 0) over a rectangular
aperture in a thin wall (d = 0); a comparison with experiment indicated that
the real parts of the poles correspond to the various operating frequencies of
self-sustained oscillations of the aperture shear layer. For uniform grazing
flow (U, = U) KR(w) is regular in Im(w) > 0 for d = 0 (Howe, Scott and Sipcic
1996); in this case there is no vortex sheet across the aperture in the
undistufbed state, and linear theory predicts that there are no self-sustained

oscillations.
2.2 The thin wall approximation

The equations of motion of the vortex sheets spanning the aperture
openings of Figure 1 (d # 0) are similar to that discussed by Howe, Scott and
Sipcic (1996) for circular and rectangular apertures in a wall of
infinitesimal thickness, and only a brief outline of the derivation is needed

here.

Consider time-harmonic excitation of the aperture by a uniform pressure
differential [po(w)]e'“m. Let §+(x1,x3)e'““ respectively denote the

displacement (in the x,-direction) of the upper and lower vortex sheets from
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their undisturbed positions x, = i%d. At low Mach numbers the local motion
may be regarded as incompressible, and linearized representations of the

perturbation pressures above and below the wall have the forms

2

N o (¥1,Y3) 1
P=P, - P [“’+1U+5§1] S apey] D% %2 >34
. (2.3)
3 V1 ¢-(y1,¥s) 1
= +iU — T dy, d ’ < -_d’
P ¥ po[w t '3x1] 5 2n|x-y| V1Ts0 % 2

where respectively y = (yl,i%d,ya), the integration is over the aperture

Wt j5 here and hereinafter

cross-section S, and the exponential time factor e’
suppressed. Note that, according to linear theory, vorticity impinging on the
downstream edge of the aperture remains in the plane of the (upper or lower)
surface of the wall, where its subsequent influence on the unsteady flow is

annulled by image vorticity in the wall.

In the thin wall approximation the wavelength of motions of the vortex
sheets is assumed to be large compared to the wall thickness d. 1In these
circumstances the fluid displacement ¢ in the X, -direction within the aperture

may be assumed to be independent of X, i.e., we can take

Then the equation of motion of a "column" of fluid within the aperture is just
p,da%c/at? = -[pl, x| <s, |x,] <3b,

where [p] is the difference in the pressures applied to the upper and lower
ends of the column at X, = i%d. For time-harmonic motion, equations (2.3)

accordingly imply that

.. 0 2 ., 0 211 $(y1,Y3)dy,dy, 2 (po]
[[w+1U+5;(—1] + (w-l-lU_&-l] ]gJ’s -\/(Xl -y1)2+(x3 -ya)z + dw f(Xl,Xa) =

o

(2.5)

This equation is simplified by means of the hypothesis that vortex
shedding from the straight end x;, = -s of the aperture produces strongly
correlated motions of the vortex sheets at different transverse locations Xy
so that { may assumed to be independent of x,. Equation (2.5) may then be
explicitly integrated over the transverse span of the aperture with respect to

both y, and x, and the result cast in the form
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[[o+1f1]2+ [a+1pf1]2] Ii ¢(m)(In|é-n| + £(£,n))dn

a¢ 3¢
- 2n(g)oc @

-nsp_1/p, U2, €] <1, (2.6)

where
0=wS/U+:l‘=U_/U+v€=x1/s:’7=y1/sy

(2.7)
Z(€,n) = -In{b/s+/[(b/s)2+(§-n)2]} + V[1+(s/b)2(§-n)2] - (s/b)|€-n]. }

Equation (2.6) is next integrated with respect to the second order
differential operator on the left hand side by introducing the Green’s

function

(e, m) = (€-mel (€M 4 H(g-grelo- (€M) (2.8)

532%?;7[H

which is a particular solution of

2

[[aéig%} + [a+ipg%]2]G(§,n)'= 6(¢-n).

In these formulae, H(x) is the Heaviside unit function (= 0, 1 according as

X ; 0), and o, are the Kelvin-Helmholtz wavenumbers (Lamb 1932)

[1ii] (2.9)
o =0 . .
* 1tip

The dimensionless displacement

-2p°wzs

26 = n[p, ]

¢(€), (2.10)

then satisfies the following integrated form of equation (2.6)

1 1 . .
[z anig-niezce,mian - 2 (/] 2mo(g.man + 2,e1%E #2108 -1,
11 -1

€1 <1, (2.11)

where X _ are constants of integration.

The integral equation (2.11) is readily solved by éollocation, by the

procedure described by Scott (1995) for a vortex sheet over a circular
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aperture. The values of A are fixed by imposing the Kutta condition that the
vortex sheets should leave the upstream edges of the aperture smoothly, i.e.,
by requiring that { = 8¢/ = 0 as £ » -1 (Crighton 1985). No further
conditions can be imposed at the trailing edge (£ = 1), where the displacement
must be permitted to develop a mild, yet integrable potential flow singularity
proportional to the inverse square-root of the distance from the edge. This
singularity is the linear theory representation of the large amplitude edge

motion observed in experiments.

The aperture volume flux Q(w) = -iwafsg(xl)dxl, from which relation it

is readily deduced that the Rayleigh conductivity is given in terms of Z by

1
K, = -3b[ 2(n) dn. (2.12)
-1

The conductivity is generally a complex valued function of the frequency w,
but also depends on the aperture aspect ratio b/L, the wall thickness ratio

d/L, and the mean velocity ratio p = U_/U,.

In the special case of uniform, two sided mean flow, where U_ = U, =71,
the wavenumbers o, and o_ are both equal to o = ws/U, and it is convenient to

take Green’'s function (2.8) in the degenerate form

G(&,n) = -H(E-n) (£-n)elo(E-m),

The terms in A, in equation (2.11) should then be replaced by (Al + Azf)eiag,

where X , ), are constants determined by the Kutta condition.

2
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3. UNIFORM, TWO-SIDED FLOW OVER A RECTANGULAR APERTURE

Equations (2.11), (2.12) are first applied to investigate the stability
of nominally steady flow over an aperture in a uniform grazing mean flow,
where U = U = U (Figure 2). Linear theory predicts this flow to be stable

when d = 0.
3.1 Dependence of Rayleigh conductivity on wall thickness

Representative plots are shown in Figure 3 of the real and imaginary

parts of the dimensionless conductivity

K, (0)/b = T (0) - iA (), (3.1)

for real values of ¢ = ws/U, when the aspect ratio b/L = 2 and for a range of
values of d/L < 1. These results are typical of all aspect ratios. K has
been calculated from the numerical solution of equation (2.11) modified as
described in the last paragraph of §2. According to (2.2), perturbation
energy is dissipated at the aperture at those frequencies where A (w) > 0.
Figure 3 shows that A, is positive and effectively invariant with changiﬁg d/L
" in the low frequency region ws/U < 2.4, where energy is always dissipated.
This conclusion is important because it suggests that the effectiveness of
perforated, grazing flow screens used to absorb low Strouhal number sound and

. vibration is not significantly dependent on screen thickness.

According to Figure 3a, K (w) varies periodically when ws/U > 2 and d/L =
0. However, the influence of small, but finite wall thickness is always felt
at sufficiently high frequencies, when the second integral on the left of
(2.11), which represents the inertia of fluid in the aperture, becomes
important. This causes the oscillations in the real and imaginary parts of
KR(w) ultimately to die out as o becomes large. We shall demonstrate below
that the aperture motion is absolutely unstable when d/L »# 0; indeed, when d/L
exceeds about 0.1 (Figure 3e)'PR(w) and AR(w) vary with frequency in
qualitatively the same way as for an aperture in the presence of an unstable,
one-sided mean flow (Howe, Scott and Sipcic 1995; see also §4). In Figure 3g

(d/L = 0.5) the imaginary component AR > 0 for all w > 0, which implies that

10
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forced motion at the real frequency w is always damped; this conclusion should
be treated with caution, however, since the present thin wall theory may not

be strictly valid for such a large value of d/L.
3.2 Poles of the conductivity

An understanding of the changes in FR(w) and AR(w) with increasing values
of d/L can be obtained from the asymptotic approximation given by Howe, Scott
and Sipcic (1996, §3) for d/L = 0 and b/L > 1, namely

b
K = , 3.2
R 2{F(c) + 1n(8b/el)} ( )
where e = 2.718 is the exponential constant, and
ioJ (J.-1J.) - [J, -2i0(J -1J.)])[J, -10(J +iJ.)
F(o) = 0o 1 [J, _ 0 '; ]i 0 0 1)) , (3.3)
oI 3, +0{I2+(J -21T )?)]
Jo1 E JOl(a) being Bessel functions. The variations with o of TR and Ay

predicted by this formula are similar to those shown in Figure 3a (d/L = 0)
for b/L = 2, becoming periodic when o exceeds about 2, where

F =~ -2/(1-ie"219),
so that K (w) has simple poles at

ws
g = —

i 1
I R [_ } _________J - 41, 2, ... :
(n+Dm+ 503 - Tnewyeny)’ ° S G.4)

These poles lie in the lower half, Im(w) < 0, of the frequency plane provided
b/L > ¢*/8 = 2.51, which is always satisfied when the asymptotic formula (3.2)
is applicable. Numerical computation indicates the presence of an additional

pole, not given by this formula, on the negative imaginary axis.

The asymptotic formula (3.2) supplies a qualitative picture of the
behavior of K, (w) also for b/L = 2 and d/L = 0 (the case considered in Figure
3a); the motion is stable and poles of K, are all in the lower frequency
plane. The real parts of these poles are close to those defined by (3.4), and
correspond approximately to the locations of successive minima of FR(w) in
Figure 3a near ws/U = 3.9, 7.1, 10.2, etc. An indication of what happens to

these poles as d/L increases from zero can be surmised from Figure 3.

11
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Consider, in particular, the pole whose real part is near ¢ = 3.9 at d/L
= 0. The rapid variations near this frequency exhibited by I (w) and A (w) in
Figures 3c and 3d implies that the pole is close to the real axis for
0.03 < d/L < 0.065. If the location of the pole is approximated by

o =0+ ie,
[}
where € is real, then the curves in Figure 3c are consistent with a local

variation in the neighborhood of ¢ ='ao defined by

] i
T - iA_ = constant - ————— | vwhere a > 0,
R R -0 - ie
[+]
i.e.
Q€ a(o-0.)
T = constant + —— = %
R (0-0,)2+e? "R (0-0,)2%+e?

When a > 0 and € is small and negative (the pole being just below the real

axis), T  exhibits a deep negative minimum at o = ws/U = o_, as in Figure 3c

R
near o = 3.9. When d/L increases to 0.065, Figure 3d shows that the negative
minimum has been transformed into a sharp maximum. Since the inflexional
behavior of A, is the same in each of these cases, this change must have
occurred because of a reversal in the sign of €, i.e., because the pole has

crossed the real axis into the upper half plane.

The'Newton-Raphson procedure and numerical predictions of 1/K; (w)
supplied by (2.12) can be used to track the motion of poles into the upper
half-plane as d/L increases from zero, by starting from initial trial values
given by (3.4) for a given value of n. Poles in the upper frequency plane
correspond to spontaneously excited instabilities. Figure 4 illustrates pole
loci for the first four "operating stages" n = 1 - 4 when the aspect ratio b/L
= 2, and reveals that high frequency, high order instabilities (n large) are
the first to be excited as d/L becomes finite. All instability modes are
possible when d/L exceeds about 0.05. When d/L decreases from this value, the
poles dorresponding ton=1, 2, 3, etc, successively cross into the lower
half plane; the first four stages are stable when d/L is less than about 1073,
This figure also shows that the various poles converge onto the imaginary axis

when d/L becomes large, and that their real parts become approximately equal,

12
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although the present thin wall approximation is probably not applicable for
d/L = 0.5. The results are presented differently in Figure 5, where the
dependence of the Strouhal number fL/U on d/L (where f = Re(w)/2n for the pole
at w) is shown for the first four operating stages. Each curve starts on the
left at that finite, non-zero value of d/L at which the corresponding pole

crosses into the upper frequency plane.

These predictions are for b/L = 2. However, similar results are obtained
for arbitrary values of the aspect ratio b/L. This is illustrated by the
example of Figure 6, which gives the Strouhal number dependence on d/L for

b/L = 500, i.e., for an aperture in the form of a long, transverse slot.

13
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4. ONE-SIDED FLOW OVER A RECTANGULAR APERTURE
4.1 Instability of one-sided flow

Let the mean flow be confined to the upper region of Figure 1 (i.e.,
U = 0). In the steady state a vortex sheet separates the uniform flow at
speed U = U from the stagnant fluid within and below the aperture. The sheet
is unstable for arbitrary wall thickness, and K (w) must therefore have poles
in the upper frequency plane. This may be contrasted with the uniform,
two-sided flow of §3, which is stable when d = 0. However, two-sided fiow is
also unstable for d = 0 when the aperture supports a mean shear (U_ = U ).
The manner in which this instability arises can be illustrated in terms of the
analytical approximation (3.2) for KR(w) for b/L » 1; when U, = U_, the
definition (3.3) is replaced by (Howe, Scott and Sipcic 1996)

-0,3,(0.)[3,(0,)-2W(0,)] + 0 J (0,)[J,(0_)-2W(a )]
o, W )[J,(a,)-2W(o,)] - o W(o, )[J,(0_)-2W (o )]

F(o) = , (4.1)

where W(xX) = ix[Jo(x) - iJl(x)] and o, are defined as in (2.9).

This formula can be used to calculate the loci of the poles from their
initial locations in Im(w) < 0, given by (3.4), as u = U_/U+ decreases from 1
to 0. The result is depicted in Figure 7 for the first four operating stages.
As for the case of destabilization by increasing wall thickness (§3.2), higher
order poles are the first to cross into the upper half plane as U_/U,
decreases; all of the poles lie in Im(w) > O when U_ /U < 0.47. These plots
are for the quasi-two-dimensional aspect ratio b/L = 500, but are typical of
the behavior for arbitrary values of b/L. Ultimately, when U_ = 0, the poles
for large values of n lie along a ray making an angle of 45° with the positive
real axis (a related set of poles, corresponding to n < 0 in (3.4) lies
asymptotically along the image of this ray in the imaginary axis). According
to (3.4), when U_/U_ = 1 the real parts of successive poles differ by about x.
As U_/U, decreases this difference gradually diminishes, until when U_ = 0
both their real and imaginary parts differ by about n/2. This means that the
jump in Strouhal number fL/U between successive stages of the aperture tones

is about % when d = 0 (Howe 1997).
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4.2 Conductivity for finite wall thickness

The conductivity KR(w) for one-sided flow and real w is calculated from
equations (2.11) and (2.12), and does not vary significantly with d/L except
when d/L is greater than about 0.2. This is illustrated in Figure 8 for an
aspect ratio b/L = 2. The real part I (w) hardly changes at all with
increasing d/L, and (as in the case of two-sided uniform flow) AR(w) > 0 when
ws/U is small (less than about 1.5), at which frequencies forced motion of the
shear layer by the applied pressure load [po] is always damped; the variation
of Ap(w) with w is effectively independent of d/L in this frequency range.

For larger values of ws/U energy is extracted from the flow and supplied to

the perturbing field where AR(w) < 0.

In Figure 3, for two-sided uniform flow, the rapid changes in the form of
K. (w) with varying d/L are produced by poles crossing the real axis. In the
present case the poles are already in the upper half-plane when U. = 0 and 4 =
0, and their subsequent motions when d/L increases from zero causes relatively
minor changes in KR(w). These motions (from initial positions indicated in
Figure 7 at U /U= 0) are plotted in Figure 9 for the first four operating
stages when b/L = 500. Re(ws/U) becomes approximately the same for the poles
shown in the Figure when d/L is larger than about 0.4, i.e., the Strouhal
numbers of the operating stages become equal. One-sided flow is unstable for
all values of d/L; Figure 10 shows how the Strouhal numbers fL/U = Re(ws/nU)
change with d/L for b/L = 500. Results for smaller aspect ratios are

- qualitatively and quantitatively similar, and will not be given here.
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5. CONCLUSION

Vortex shedding in wall apertures in the presence of grazing mean flow is
responsible for an exchange of energy between the mean flow and an applied
pressure, associated, for example, with a sound wave incident on the wall or
with pressures generated by structural vibrations. Previous analytical
treatments of such interactions for an infinitely thin wall have predicted
that the applied perturbation is damped (energy being transferred to the mean
flow) provided the Strouhal number is sufficiently small. In this chapter the
magnitude of this low Strouhal number damping has been shown to be effectively
unchanged when the wall has small, but finite thickness, characteristic of
real structures. In all cases, however, finite thickness does modify the
stability of the motion. For high Reynolds number two-sided flow, when the
mean velocity is the same on both sides, the aperture flow is linearly stable
for a wall of zero thickness. The mean shear layers introduced by finite wall
thickness destabilize the flow, mathematically because increasing thickness is
responsible for the migration of poles of the Rayleigh conductivity into the
upper half of the complex frequency plane. The instabilities are here
interpreted as tonal, self-sustained oscillations of the flow, whose
frequencies occur in discrete bands (or "stages") as the wall thickness
varies, at values equal to the real parts of the instability poles. The
absence of experimental data for aperture flows of this type precludes a
direct experimental validation of this hypothesis. However, Howe (1997) has
reported excellent agreement with published data for frequency predictions of
the same theory applied to edge-tones and shallow wall-cavity tones. The
aﬁplitudes of the oscillations are controlled by nonlinear mechanisms not
discussed in this paper, and are typically independent of the presence of any

other applied pressure perturbation.

One-sided flow over an aperture is unstable for arbitrary wall thickness.
As the wall thickness increases from zero, for either one or two-sided flow,
the frequencies of the instability modes progressively decrease, and
ultimately approach a common value, although it is uncertain whether the
approximation of this paper remains valid in this limit. At low Strouhal

numbers, forced motion of an aperture by an applied pressure is always damped.
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upper region

T

lower region

Figure 1. Idealized model of two-sided mean flow over a rectangular aperture
in a wall of thickness d; the transverse length (out of the plane

of the paper) of the aperture is b.
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Figure 2. Uniform grazing mean flow over a rectangular aperture.
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Illustrating the dependence of I%(w)/b = I'R (w) -1iAg (w) on frequency
, = U for b/L = 2 and for (d) 0.065, (e) 0.1.
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Im ws/U

Re ws/U

Figure 4. Loci of poles of K (w) in the complex frequency plane for U =1U_ =

U for the first four operating stages n = 1 - 4 when b/L = 2.
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Figure 5. Strouhal number dependence on wall thickness for two-sided uniform

flow (U, = U_ = U) when b/L = 2.

25




Report No. AM-98-029 Boston University, College of Engineering

L —>
— 4 b/L =500
4 ]
s 3 _
< |
2,1 )
1 —]
0 Lo e el
3 2 -1
10 0% 4L 10 1

Figure 6. Strouhal number dependence on wall thickness for two-sided uniform

flow (U, = U_ = U) when b/L = 500.
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CHAPTER 2
INFLUENCE OF CROSS-SECTIONAL SHAPE ON THE
CONDUCTIVITY OF A WALL APERTURE

M. S. Howe
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SUMMARY

An analysis is made of the effect of cross-sectional shape on the motion -
induced in a wall aperture by a pressure perturbation in the presence of high
Reynolds number tangential flow. Previous studies for circular and
rectangular apertures indicate that there is a transfer of energy from the
applied perturbation to the mean flow (via the production of vorticity in the
aperture) provided the Strouhal number based on aperture diameter and mean
velocity is small. 1In this chapter we consider apertures whose cross-sections
are symmetrically tapered in a direction parallel to the mean flow. For
highly tapered apertures of trapezoidal cross-section, it is found that low
Strouhal number damping is confined to a smaller range of frequencies.
Self-sustaining oscillations of the shear layers spanning the aperture can
occur at certain discrete frequencies, which correspond to the feal parts of
complex eigenfrequencies of the aperture motion having positive imaginary
parts. The eigenfrequencies are poles of the Rayleigh conductivity, and are
found to vary in proportion to U/L, where U is mean flow speed and L is the
maximum streamwise length of the aperture, but to be only weakly dependent on

aperture shape.
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1. INTRODUCTION

Sound incident on small apertures in the presence of mean flow is
frequently dissipated via the production of vortical kinetic energy that is
swept away by the flow [1]. The absorption can be enhanced over well defined
ranges of frequencies when the apertures are backed by resonant cavities [2,
3]. Under certain conditions, narrow band acoustic tones may be generated
spontaneously at the aperture, even when the mean flow is nominally steady and
there is no applied pressure [4]. The tones are often heard over distinct
“operating stages" within which the Strouhal number based on aperture
dimension and mean flow velocity varies over a finite range controlled by an
acoustié or hydrodynamic feedback. The feedback is related to the periodic
shedding of vorticity from an edge, its convection over the aperture, and the
subsequent production of impulsive pressures when the vorticity impinges on a
downstream edge [5]. The tonal amplitude varies with flow speed and exhibits
discontinuous changes in frequency as the system jumps between different

operating stages, in accordance with various well known empirical laws [5 -
9].

There is no general theory of feedback controlled by vortex shedding at
arbitrary Mach number (particular approximations are discussed in [10 - 15]),
but a deductive theory of the resonance stages has been proposed by the author
[16] for cases of low Mach number, high Reynolds number flow over an
acoustically compact aperture in a plane wall. The Strouhal number of an
operating stage is identified with the real part of a pole in the upper half
of the complex frequency plane of the Rayleigh conductivity of the aperture
[17]. The conductivity is calculated according to linear perturbation theory,
by approximating the shear layer over the aperture by a linearly disturbed
vortex sheet. Nonlinearity must limit the growth of instabilities predicted
by this approach, but it is argued that the finite amplitude of the real
motion will not significantly change Strouhal number predictions of linear
theory, because feedback is controlled by the convection velocity U, of
disturbances across the aperture, which experiments suggest to be effectively

independent of amplitude [18 - 20]. Further justification is given in [16],
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where predictions (based on the same theory) of the operating stages of
jet-edge interactions and shallow wall cavities are shown to be in excellent

agreement with experiment.

The theory of reference [16] is applicable to rectangular apertures in a
wall of infinitesimal thickness, and is an extension of a numerical
investigation of the conductivity of a circular aperture in the presence of
flow performed by Scott [21, 22]. The influence of small, but finite wall
thickness is considered in [23]. In applying idealized models of this kind to
practical problems involving, say, the interaction of sound waves with a
sparsely perforated screen in a mean flow, it is also desirable to know the
likely effects of varying the shape of the aperture cross-section (for shapes
other than circular or rectangular). It would then be possible to ascertain,
for example, whether it is possible to optimize the attenuation of sound by
the screen by a suitable adjustment of aperture shape and dimensions. Similar
considerations are important for vortex shedding devices used to absorb
structural vibrations [24], examples of which are discussed in Chapters 6 and

7.

In this chapter we investigate the influence of cross-sectional shape for
a class of "tapering" apertures that have one‘straight edge normal to the
flow, and an axis of symmetry parallel to the mean flow direction.
Predictions are given for cases involving flow on one or both sides of the
wall at very high Reynolds number, when free shear layers may be modeled by
vortex sheets. The motion is stable when the mean flow is the same on both
sides of the wall and the wall has negligible thickness (when, for an ideal
fluid, the mean vorticity vanishes in the steady state [22]), but becomes
unstable at finite thickness, giving rise to self-sustaining aperture
oscillations and sound generation. One-sided flow over the aperture (which is
then spanned by a plane vortex sheet in the undisturbed state) is élways
unstable, and finite wall thickness merely changes the Strouhal numbers of the
self-sustained oscillations. Reverse flow reciprocity can be invoked to argue
that the conductivity and instability Strouhal numbers are unchanged when the
direction of the mean flow is reversed. We present detailed results for an
aperture of trapezoidal cross-section that is symmetric with respect to the

direction of the mean flow. It is concluded that permissible Strouhal numbers
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of self-sustained oscillations for symmetric shapes of this kind scale with
the maximum aperture dimension in the streamwise direction, but that the
damping of an incident pressure field at low Strouhal numbers is confined to

progressively smaller frequencies as the tapering increases.

The analytical model is formulated in §2 for a general symmetric, '
tapering aperture in the presence of an arbitrary, two-sided, low Mach number,
high Reynolds number flow. Specific results are given in §§3, 4 respectively
for two-sided uniform flow and one sided flow past an aperture of trapezoidal

cross-section.
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2. THE GOVERNING EQUATIONS
2.1 The Rayleigh conductivity

Consider fluid of uniform mean density P, in nominally steady, low Mach
number, high Reynolds number flow over both sides of an aperture in a plane,
rigid wall of thickness d. The midplane of the wall coincides with the plane
X, = 0 of the rectangular coordinate system (xl,xz,x3). The mean flow is
parallel to the xl-axis with main stream velocities U, and U in the "upper"

) : i%d respectively. Attention is confined to the set

and "lower" regions x
of tapering apertures of the type illustrated schematically in Figure 1. The
vleading edge" of the aperture is assumed to be straight, and to occupy the
interval x = -s = -L/2, |x3| < bo/2, where L denotes the maximum length of
the aperture in the streamwise direction, and b/ is the maximum spanwise
dimension (at the leading edge). Over the interval -s < X <8 of length L,
the aperture is symmetric about the xl-axis, with side edges defined in the
xlxa—plane by x, = ib(xl)/z, where b(xl) is required to be either constant or:
to decrease monotonically with xl; The shear layers over the upper and lower
faces of the aperture are modeled by vortex sheets, and the fluid within the

volume of the aperture (in |x2| < %d) is taken to be in a mean state of rest.

Uniform, small amplitude, time-dependent pressures pi(t) are applied in
the vicinity of the aperture respectively in the upper and lower regions. The
resulting disturbances of the vortex sheets are assumed to be governed by
linearized equations of motion. The aperture volume flux Q(t) produced by the
pressure differential

[Po(t)] =p, () - p_(t)
can be expressed in the form
o]

po0(e) /ot = -[ K (W) Ip, (@) 1e73¢% au, (1)

-0
where KR(w) is the Rayleigh conductivity {17], which is a function of the
radian frequency « with the dimensions of length, and
lp, (@)1 = (1/2m) f° [p (t)]e'" dt

is the Fourier transform of [po(t)].

36




Report No. AM-98-029 Boston University, College of Engineering

For time-harmonic fluctuations, where [po(t)] = Re{[po(w)]e'iwt}, the
power II(w) dissipéted at the aperture by the applied pressure field can be
expressed in terms of the conductivity by making use of the formula

I = -(Q(t)[p, (t)]1),

where the angle brackets denote a time average. This yields (for w > 0)

M(w) = -|[p,]1*In{Ky (©)}/2p 0. (2)
Direct thermo-viscous losses are usually negligible at high Reynolds numbers,
when ﬁost of the dissipation is caused by the transfer of energy from the
applied pressure (an incident sound wave, say) to the kinetic energy of
vorticity generated in the aperture. Equation (2) shows that this occurs
provided Im{KR(w)} < 0 (when w > 0). The damping is negative if Im{KR(w)) >
0, in which case energy is extracted from the mean flow. When the fluid is
compressible Q determines the amplitude of an effective acoustic monopole
source at the aperture, and a net gain in perturbation energy would result in

increased levels of radiation from the aperture on either side of the wall.

In practice an arbitrary flow disturbance can trigger instabilities of
the aperture flow, and result in oscillations and acoustic radiation at one or
more preferred frequencies. These instabilities are associated with
singularities of the conductivity K (w) in the upper half of the complex
frequency plane [16]. Indeed, although equation (1) determines Q(t) in terms
of the applied pressure differential [p (t)], a strictly causal evaluation of
the integral requires the path of integration from w = *® to pass above the
singularities of the integrand in the w-plane. Since p,(t) may be assumed to
vanish prior to some finite time in the past, [p, (w)] is regular in Im{w} > O,
and any singularities are associated with the conductivity K (w). These
singularities are simple poles for circular and rectangular apertures [16, 21
- 23], and will be shown to be poles also for the set of apertures discussed
in this chapter. Experiments on jet-edge interactions and shallow wall
- cavities, for which the same type of theory is applicable, indicate [16] that
the real part of the complex frequency at these poles, determined according to
idealized, linear perturbation theory, may be identified with the frequency of
an operating stage of the self-sustained oscillations of the aperture flow for

the real, nonlinear system.
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2.2 The thin wall approximation

The equations of motion of the vortex sheets spanning the aperture
openings of Figure 1 are similar to those discussed in (16, 22] for circular
and rectangular apertures in a wall of zero thickness, and only a brief

outline of the derivation is needed here.

Let the aperture be excited by a time-harmonic, uniform pressure
differential [po(w)]e'“m, and denote respectively by gi(xl,xa)e'“m the
displacement (in the xz-direction) of the upper and lower vortex sheets from
their undisturbed positions x, = i%d. The flow Mach numbers are assumed to be
sufficiently small that the motion in the neighborhood of the aperture may be
treated as incompressible, so that the following linearized formulae for the

perturbation pressures above and below the wall are applicable

g (}'1 ,}’3) 1

dy.dy., > =2d
27 | x-y| V195 %2 72

o
]

3 2
p+ B po [w+lU+5;1] S

(3)
]Z g- (Y1 sy:g)
S

27| x-y|

a
+ w+ilU —
P. p°[ Tox,

dy dy,, x, < -2d,

where respectively y = (yl,i%d,ys), the integration is over the aperture
cross-section S, and the exponential time factor e *“* is here and henceforth

suppressed.

We now introduce the thin wall approximation, in which the wavelength of
vortex sheet motions is restricted to be large compared to the wall thickness
d. The x,-component ¢ of the fluid displacement within the aperture may then

be regarded as independent of x,, i.e.

¢ o= o(x, %) = £, (x, %) = §_(x,,%,), Y
and the equation of motion of a "column" of fluid within the aperture is
p,dd%5/at% = -[p], Ix,| <s, |x,| <3b(x), (5)

where [p] is the difference in the pressures applied to the upper and lower
ends of the column at X, = t%d, determined by equations (3). Thus,

substituting from (3) into (5) we find, for time-harmonic motion,
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3 2 3 1211 ,¥3)dy, d
[[w+iU+——] + [w+iU_——] ]_JS 5 £y 32’3) N 4 dw?r(x,,x,) =
9%, ax, 2x (x,-y;) +(%,-y,) p
(6)
According to Figure 1 the aperture motion involves the unsteady shedding
of vorticity from the straight leading edge X, = -s of the aperture. Equation
(6) is considerably simplified by means of the hypothesis that this shedding
produces strongly correlated motions of the vortex sheets at different

transverse locations x_,, and that { may therefore be assumed to be independent

30
of X, . To be sure, observations [11 - 13, 15] suggest that, although the
laterally uniform shed vorticity interacts with different parts of the
downstream edge at different times, the aggregate back reaction on the leading
edge is equivalent to an average back reaction that causes the stability
characteristics to be the same as those of a rectangular aperture of
intermediate length. By explicitly performing the integration in (6) with
respect to y, over the interval -%b(yl) <y, < %b(yl), and also integrating
the equation with respect to x

(over -%b(xl) <x. < %b(xl)), we can then

3
re-cast (6) in the following dimensionless form:

3

32 Cay3 d _
[[o+ige) + [ovingg]) ] [, Znanienl + 26 mian - n(S)erzeer - 20%B0),
€1 <1, (7)
where Z is an effective dimensionless displacement defined by
; -2p w?s
Z(§) = ———— b(£)§ (&), (8)
x[p, Ib,
and
o=ws/U , p=U/U, §=x/s, n=y,/s, 9)
2(6,m) = o (18(&)-B(n 11n[B(&)-B(m) + VCEMIFFBE) B
2B(n)
- (BB 11n[B(6)+8(n) + VEER)FHBEITBNIZ]
- V(€-m)2H(B(€)-B(n)}% + V(ﬁ-ﬂ)2+{ﬂ(€)+ﬂ(v)}2], (10)
(&) = b(x,)/2s, B(§) = b(x,)/b = (25/b )B(E). (11)
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We next integrate equation (7) with respect to the second order
differential operator on the left hand side by introducing the Green’s

function

G(€,n) = (6-mel (€M) 4 u(g-g)elo- (M) (12)

aai—.,s[ﬂ

which is a particular solution of

[(a+i:—§]2+ [a+ip:—€]z]G(§,r/) - §(¢-m).

In these formulae, H(x) is the Heaviside unit function (= 0, 1 according as

X ; 0), and o, are the Kelvin-Helmholtz wavenumbers [25]

1#i
- a[ _1]. (13)
* 1tip

By this means the effective displacement Z is found to satisfy

1

1
[ zenanignt+z,mian - xe* /)| zmee,man
11 . -1

+ 2,08 4 2 o198 - Fo,8), 1€] <1, (14)

where )\, are constants of integration, and F(o,§) is a particular integral of
the term 20%2B(€) on the right of (7) with respect to the second order

differential operator.

The integral equation (14) is solved by collocation, by the procedure
described by Scott [21] for a vortex sheet over a circular aperture. The
values of A, are fixed by imposing the Kutta condition that the vortex sheets
should leave the upstream edge of the aperture smoothly, i.e., by requiring
that ¢ = 3¢/3 = 0 as & » -1 [26], which is equivalent to

Z = 93Z/36 = 0 at £ = -1. (15)
Potential theory implies that the displacement has a mild, yet integrable
singularity where the vortex sheet impinges on the downstream curvilinear
aperture edge, at the worst proportional to the inverse square-root of the
distance from that edge. This singularity is the linear theory representation

of the large amplitude edge motion observed in practice.
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The aperture volume flux is calculated from
Q(w) = -iwf? b(x, )¢ (x,)dx,,
from which it follows that the Rayleigh conductivity is given in terms of Z by

1
Ky = -§b°J Z(n)dn. (16)
-1

The conductivity is a complex valued function of the frequency w, and also
depends on the aperture shape, the wall thickness ratio d/L, and the mean

velocity ratio p = U_/U,.

In the special case of uniform, two sided mean flow, where U =1U =T,
the wavenumbers o _ and o_ are both equal to ¢ = ws/U, and Green's function

(12) may be taken in the form
G(&,n) = -H(&-n) (¢-myeto(&-m), (17)

The terms in A, in equation (14) are now replaced by (Al + AZE)eiag, where Al,

A, are constants determined by the Kutta condition.

2.3 Reciprocity

A simple extension of the reverse flow reciprocal theorem [28, 29] can be
used to show (see [22]) that the conductivity KR(w) determined by (16) for the
aperture of Figure 1 is unchanged when the mean flow directions above and
below the wall are reversed. The reciprocal theorem for an ideal fluid of
uniform mean density, implies that w(xB,xA,w) = ¢R(xA,xB,w), where w(x,xA,w),
¢R(x,xB,w) are the perturbation velocity potentials produced by equal volume
point sources located respectively at x, in the direct problem and at x; in
the reciprocal problem, provided the mean flow is reversed in the reciprocal
problem. The theorem remains valid in the presence of vortex sheets spanning
the wall aperture provided that, in both the direct and reciprocal problems,
the sheets are linearly disturbed from their equilibrium positions, and the
Kutta condition is satisfied at the appropriate "leading edge". In the
reciprocal flow illustrated in Figure 2, the Kutta condition must be imposed
at the curvilinear edge of the aperture, and this is precisely the case that
defines the conductivity when the mean flow is reversed. The theorem has been
confirmed by recent numerical studies [30] that do not invoke the lateral

averaging approximation introduced above to simplify equation (6).
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3. UNIFORM, TWO-SIDED FLOW OVER A TRAPEZOIDAL APERTURE

Equations (14), (15) are now applied to the trapezoidal aperture depicted
in planform in Figure 3a. The aperture is symmetric with respect to the
x1~axis, with transverse ends at x, = ts of lengths bo and b1 (= bo)
respectively, in terms of which

Ao =1+ 32 - 16, Feo0) = Ao - a2 - )R (18)

In this section we consider the particular case in which the mean flows have

equal speeds U, = U = U above and below the aperture.
3.1 Dependence of Rayleigh conductivity on bl/bo

In Figures 3b and 3c the real and imaginary components I, A, of the

dimensionless conductivity, defined by

K, (@) VA = T, (0) - iA (), (19)

are plotted against real values of ¢ = ws/U, for b /L =1 and d = 0, for the
two characteristic cases b /b =1 and 0.1 respectively, where

A= s(b +b ) = 2L(b_+b,)
is the area of the aperture. The first of these corresponds to a square
aperture and the second approximates to a triangular profile with apex angle
close to 50°. KR is calculated from the numerical solution of (14) modified
as described at the end of §2.2 by using the degenerate Green’s function (17).
According to Figure 3b, I'' and A, are periodic functions when ws/U exceeds
about 2. The particular results shown in Figure 3c are typical of all values
of b,/b, < 1. The real and imaginary parts of K, again exhibit wavelike
variations with frequency, but the waveforms are now sharper than for the
square aperture, essentially because singularities (poles) of KR(w) occurring
at complex frequencies tend to be closer to the real axis (cf. [23]).

Equation (2) implies that perturbation energy is dissipated in the aperture

when AR(w) > 0, and Figure 3 shows that the intervals wheré this is the case
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are effectively the same for the square and tapered apertures, except for the
first, low frequency interval, where tapering reduces the width of the
dissipative zone by about a half. Figure 3c also exhibits a gradual decrease
with increasing frequency in the amplitude of the oscillations of I, and Ag;
this is similar to the results given in [21, 22] for the circular aperture,

but does not occur for the square aperture.
3.2 Flow instability for finite wall thickness

When the wall has zero thickness (d = 0) and the flow is the same on both
sides (U, = U_), the unsteady aperture motion is stable, in the sense that
self-sustaining oscillations cannot be maintained by the extraction of energy
from the mean flow. According to (2), energy is extracted from the flow at
those excitation frequencies in Figure 3 where AR(w) < 0. But this
instability is conditional, inasmuch as the oscillations do not persist once
the exciting pressure [po]e'i“’t is removed. On the basis of linear theory,
absolute instabilities are associated with singularities of the conductivity
KR(w) in Im(w) > 0. These singularities are typically simple poles of KR(w);
they are eigenvalues of equation (14), and are independent of both F(s,£) and

the assumption that the driving pressures p, are uniform.

To see this, the integrals over (-1,+1) on the left of equation (14) are
discretized by using a convenient Gauss integration formula that expresses
them in terms of the integrands evaluated at N lattice points Ei (1 <i=<N).
For such a scheme El = -1+ 6, &N =+1 - 6, where 6 » +0 as N becomes large.
The Kutta condition (15) is applied by requiring Z, = Z, = 0, where Z =

Z(fi). The discretized form of equation (14) may then written

1 to N, ‘ (20)

N
¢, Z, = F(o,£,), i
j=1

where

and Gij (j = 3) depends only on the integration scheme used to approximate
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the integrals in (14). The eigenvalues o, = wns/U of (20) are the (generally
complex) roots of the equation

det(€., ) = 0. (21)
Cramer’s rule [27] and (16) now imply that the singularities of K (w) are
poles and coincide with the roots of (21). When U = U_ and d = 0, they all
lie in the lower half of the frequency plane (Im{w} < 0). The first four (n =
1 to 4, defined such that their positive real parts increase with n) have been
determined from (21) by Newton-Raphson iteration, and are shown by the points
labeled "0" in Figure 4 for the case b, /b = 0.1 and b /L = 1. The real parts
w_ of these successive zeros differ by about =, and comparison with Figure 3c
reveals that they correspond approximately to the real frequencies of the

successive minima of TR(w).

When the wall thickness d »# 0, vortex sheets span the upper and lower
faces of the aperture in the absence of external excitation, and the aperture
motion must be expected to be unstable. This suggests that the roots of
equation (21) cross the real axis into the upper frequency plane, and the
curves in Figure 4 show how this occurs for the first four operating stages.
High order instabilities (n large) are excited first when d/L increases from
zero, and all modes are unstable when d/L exceeds about 0.02. When d/L
decreases from this value, the poles corresponding to n = 1, 2,'3, etc,
successively cross into the lower half plane; the first four stages are stable
when d/L is less than about 7.5x10™%. As d/L increases the complex operating
frequencies are seen to converge towards the imaginary axis, their real parts
becoming approximately equal; however, the thin wall approximation requires
d/L to be small, and probably breaks down before this limiting behavior is
realized. According to the experimental results discussed in [16], the real
parts of the complex operating frequencies correspond to the Strouhal numbers
of self-sustaining oscillations of fluid in the aperture. The dependence of
these Strouhal numbers fL/U on d/L (where f = Re(w)/2n for a root w of
equation (21)) is illustrated by the solid curves in Figure 5 for the first
four operating stages (for b /L =1, b, /b, = 0.1) Each curve starts on the
left at that non-zero value of d/L at which the corresponding root of (21)
crosses into the upper frequency plane. The dotted curves are analogous
predictions for the square aperture (b, = b,); corresponding modes are seen to

become unstable at larger values of d/L. These results imply that the
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Strouhal numbers of different trapezoidal apertures are approximately the same

when based on the total aperture length in the streamwise direction.

It is also instructive to examine the structural changes in K (w) for
real frequencies when d/L increases from zero. The real and imaginary
components FR(w), AR(w) have the near periodic forms shown in Figure 3c when d
= 0 and bl/b° =0.1, bo/L = 1. The influence of small, but finite wall
thickness is always felt at sufficiently high frequencies, when the second
integral on the left of equation (14), which represents the inertia of fluid
in the aperture, becomes important. This causes the oscillations in the real
and imaginary parts of K;(w) ultimately to die out as o becomes large. The
variations of T, and A, for the four different wall thicknesses d/L = 0.007,
0.01, 0.03 and 0.1 are depicted respectively in Figures 6a - 6c. In Figure 6a
the second stage pole of KR(w) (i.e., the n = 2 root of (21)) is close to the
real axis in the upper frequency plane. When d/L increases to 0.0l the first
stage pole is approaching the real axis from below, and this is reflected in
Figure 6b by the more rapid variations of I, and A, near wR/U = 4; this pole
has crossed the real axis in Figure 6c, where the former deep minimum of PR is
replaced by a sharp maximum, and the variations in I, and A, at higher
frequencies are smoother because higher order poles are now further from the
real axis. When d/L has increased to 0.1 all of the poles are far from the

real axis and the conductivity assumes the characteristic form shown in Figure

6d, which is very similar to that for one-sided flow over the same aperture

(see §4).
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4. ONE-SIDED FLOW OVER A TRAPEZOIDAL APERTURE
4.1 The conductivity for zero wall thickness

Let the mean flow be confined to the upper region x, > %d, over the

trapezoidal aperture of Figure 3a (so that U = 0). In ihe undisturbed state
a vortex’sheet separates the uniform flow at speed U = U from the stagnant
fluid within and below the aperture. The sheet is unstable for arbitrary wall
thickness d, and K (w) has poles in Im(w) > 0. Representative plots of
KR(w)/VZ for real frequencies are given in Figure 7 for d = 0, when b /L =1
and b, /b = 0.01, 0.1 and 1. All of these plots are structurally similar, and
exhibit damping of the applied disturbance by vorticity production when w is

smaller than a critical frequency w, , - say (where AR(w) > 0) which, however,

becomes progressively smaller as b, /b decreases.

They are also similar in form to the conductivity illustrated in Figure
6d for two sided, uniform flow (U. = U ) over a wall of finite thickness d/L =
0.1, and indeed the conductivity KR(w) for one sided flow over a thin wall
also has a similar distribution of instability poles in the upper frequency
plane. The variations in the positions of these poles with the ratio b, /b,
for the first four stages (n = 1 to 4) are shown in Figure 8 for the case b /L
=1, d/L = 0. By means of the identification f = Re(w)/2n, the dependence on
b, /b, of the corresponding Strouhal numbers fL/U may be calculated; Figure 9
reveals that the Strouhal number changes by about % between neighboring stages
and, in particular (as in the case of two sided flow over a wall of finite
thickness, see Figure 5), is only weakly dependent on the shape of the

aperture.
4.2 Influence of finite wall thickness

For real values of w the conductivities K (w) displayed in Figure 7 do
not vary significantly with the trapezoidal shape ratio b,/b_ . Changes with
variations in wall thickness are also small, unlike the case of uniform,
two-sided flow discussed in §3, where KR(w) changes rapidly with d/L because
of the passage of poles across the real axis. For one-sided flow, the

instability poles are already in Im(w) > O when d = 0, and their subsequent
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\

motions in the complex plane when d/L increases from zero produce relatively
minor changes in KR(w). The particular case in which bo/L =1, bl/b° = 0.1 is
illustrated in Figure 10, where the poles of the first four operating stages
are tracked (from initial positions given in Figure 8 for bl/bo = 0.1) in the
complex plane as d/L increases over the range 0 - 0.5. Re(ws/U) is
approximately the same for these poles when d/L exceeds about 0.4, implying
that the Strouhal numbers fL/U of the operating stages become equal, although,

as already stressed in §3, the present thin wall theory may not be strictly

applicable for such large values of d/L.
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5. CONCLUSION

The properties of unsteady flow induced in a wall aperture by an applied,
fluctuating pressure (such as an acoustic disturbance) are significantly
affected by the presence of mean flow. At the high Reynolds numbers
characteristic of many practical situations, vortex shedding from the aperture
edges results in an exchange of energy between the mean flow and the applied
pressure. In this chapter we have investigated these interactions for a class
of apertures whose cross-sections are symmetric with respect to an axis in the
mean stream direction and for a wall of small, but finite thickness. Detailed
predictions have been given for apertures with tapering (trapezoidal)
cross-sections. For two-sided flow, when the mean velocity is the same on
both sides of the wall, the motion in the aperture is linearly stable when the
wall has zero thickness, but is de-stabilized by finite thickness, when
complex eigenfrequencies acquire positive imaginary parts. These
eigenfrequencies are poles of the Rayleigh conductivity of the aperture; their
values vary in proportionbto U/L, where U is mean flow speed and L is the
maximum streamwise length of the aperture, but are only weakly dependent on
aperture shape (i.e., on the degree of tapering). A comparison with
expefiment reported in [16] for related physical systems (edge and cavity
tones) indicates that the real parts of the complex eigenfrequencies
correspond to the tonal frequencies of possible self-sustaining oscillations
of the aperture shear layers, the amplitudes of which are controlled by

nonlinear mechanisms not considered in this paper.

The motion is always unstable for one-sided flow over a wall aperture.
In both this case and also for uniform, two-sided flow, increasing the wall
thickness causes the eigenfrequencies to progressively decrease, apparently
towards a common 1imiﬁing value for their real parts, although the
approximations made in this paper become invalid before this limit is reached.
At sufficiently low Strouhal numbers, forced motion of an aperture by an

applied pressure is always damped.
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Figure 1.

leading edge shed vorticity

Two-sided flow over a symmetric, tapered aperture with a straight

leading edge in a wall of thickness d.
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"leading edge"

Figure 2. The reciprocal problem.
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Figure 3. (a) Trapezoidal aperture; (b) The conductivity KR(w)/f =

I‘R (w)-iAR (w) for U_ = U, and d/L = 0 for a square e}perture,
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1; (e¢) conductivity for bo/L =1, bl/bo
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Figure 4. Loci of the complex eigenvalues (zeros of det:((!ij ), poles of K)
for varying d/L, for the first four operating stages when U = U_ =
U, b/L=1, b /b =0.1.
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Figure 5. Strouhal number dependence on wall thickness for two-sided
uniform flow (U, = U_ = U) for b_/L = 1: , by /b, = 0.1;
eeee, b /b = 1.
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Uniform, two-sided flow: by /b, = 0.1, by/L = 1
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Figure 6. The dependence of Kn(w)/\/Z = I‘R (w)-iAR (vw) on frequency when
U =y =10, b /L= 1, bl/bo = 0.1 and for 4/L = 0.007, 0.01.
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Trapezoidal aperture in one-sided flow
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Figure 7. The conductivity KR(w)/\/Z = I (w)-1A; (w) for one-sided flow
(U, = U, U =0) over a trapezoidal aperture when d/L = 0, b /L =1
and for b, /b = 0.01, 0.1 and 1.
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Trapezoidal aperture: b,/[=1, d/L=0, U, =U, U=0
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Figure 8. Complex eigenvalues (zeros of det(Gi.j ), poles of KR) for the first
four operating stages of one-sided flow (U, = U, U = 0) over a
trapezoidal aperture when d/L = 0 and b /L = 1, and for
0 < bl/bo <1,
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Figure 9. Strouhal number dependence on bl/bo for one-sided flow (U, = U,

U_ = 0) over a trapezoidal aperture when d/L = 0 and b_/L = 1.
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CHAPTER 3
RAYLEIGH CONDUCTIVITY
AND SELF-SUSTAINED OSCILLATIONS

M. S. Howe
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SUMMARY

The theory of self-sustaining oscillations of low Mach number, high Reynolds number
shear layers and jets impinging on edges and corners is discussed. Such oscillations generate
narrow band sound, and are usually attributed to the formation of discrete vortices whose
interactions with the edge or corner produce impulsive pressures that trigger the cyclic
formation of new vorticity. A linearized analysis of these interactions is described in which
free shear layers are treated as vortex sheets. Details are given for shear flow over wall
apertures and shallow cavities, and for jet-edge interactions. The operating stages of the
oscillations are determined by complex eigenvalues of the linear theory: for wall apertures
and edge tones they can be identified with poles in the upper half of the complex frequency
plane of the Rayleigh conductivity of the “window” spanned by the shear flow; for shallow
wall cavities they correspond to poles of a frequency dependent drag coefficient. It is
argued that the frequencies defined by the real parts of the complex frequencies at these
poles determine the operating stage Strouhal numbers observed experimentally. Strouhal
number predictions for a shallow wall cavity are found to be in good agreement with data

extrapolated to zero Mach number from measurements in air; edge tone predictions are in

excellent accord with data from various sources in the literature.
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1. INTRODUCTION

Consider a uniform time-harmonic pressure load [p,] = (p+ — p—)e~** applied across an
aperture in a flat, rigid wall. The “upper” and “lower” faces of the wall are respectively
the planes z, = +3d defined relative to the rectangular axes (%1, %2,23), and py, p_ are
the respective pressures above and below the wall. In practice the fluctuating load may
be caused by an incident sound wave, or by a large scale disturbance convected past
the aperture in a mean flow. The frequency of the motion is sufficiently small that the

reciprocating flow through the aperture may be regarded as incompressible.

The Rayleigh conductivity of the aperture is defined in terms of the aperture volume flux

Qe (in the positive z,-direction) and the pressure differential p, — p_ by the relation [1]

Knlu) = 222 )

where p, is the fluid density. Kg has the dimensions of length. In the absence of mean
flow, and when dissipation within the fluid and at boundaries is ignored, its value is a
constant determined by the aperture shape (it is equal to 2R for a circular aperture of
radius R in a wall of negligible thickness, and equal roughly to 2 x /(aperture area/7) for
a non-elongated aperture). When thermo-viscous losses are important the conductivity is

complex, and the power II dissipated in the aperture is given (for w > 0) by

Im{KR( )

b e
i (13)

where the asterisk denotes complex conjugate. II is positive provided Im{Kg(w)} < 0.

1 *
I = —Re(Q"[pd]) =

Kr becomes strongly frequency-dependent in the presence of mean flow. Large increases
can occur in the dissipation, because the kinetic energy of vorticity generated by the
fluctuating pressure at the aperture edges is swept away by the flow, although this may be
offset by the negative damping associated with instabilities of a mean shear layer adjacent
to the aperture, which causes perturbations to grow by extrécting energy from the mean

flow.

When [p,] = [p,(t)] has arbitrary time dependence, equation (1.1) assumes the more

general form

Po%%)-(t) = - /oo Kp(w)[po(w)]e ™" dw, (1.4)

-0
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where [p,(w)] = & [, [p,(t)]e™" dt is the Fourier transform of [p,(t)]. The applied pressure
[po(t)] may be assumed to vanish prior to some initial instant ¢ = ¢,, say, and to be non-zero
only within some subsequent finite interval. Then [po(w)] is regular in the whole of the
complex w-plane and vanishes as |w| — co. A strictly causal determination of Q(t) from
(1.3) requires the path of integration to lie in Im w > 0, above all of the singularities of
Kg(w). For t > t, the integral is evaluated by displacing the path downwards towards the
real axis, thereby capturing contributions from any singularities in the upper half-plane,
which would grow exponentially with ¢ — t,. Unlimited exponential growth cannot occur for
a real flow, but may be a mathematical artifact of a linearized approximation that neglects

the nonlinear mechanisms that curtail unlimited growth.

Linearized treatments of this kind are the subject of this chapter for flows of the type
illustrated schematically in Figure 1, involving self-sustaining oscillations of a mean flow
over a rectangular aperture in a wall. There is currently no general prediction scheme
for these flows, and only very limited progress has been made in their direct numerical
simulation at finite Reynolds number [2 - 7]. We shall assume the Reynolds number to
be sufficiently large that turbulence-free mean streams above and below the wall may be
taken to be uniform, and the mean shear layer over the aperture may be treated as a vortex
sheet that is linearly disturbed from an undisturbed, nominally planar form. In these

circumstances we find that Kr(w) has simple poles in Im w > 0.

Each pole initiates oscillatory motions of fixed frequency whose amplitudes increase
exponentially with time. Nonlinear mechanisms that in practice cut-off unlimited growth
do not necessarily alter the frequency of the oscillations, since this is determined in both the
linear and nonlinear regimes by the convection velocity of vortical disturbances across the
aperture which, according to experiment [9 - 12], is hardly influenced by vortex strength.
This suggests that linear theory may be used with advantage to identify the Strouhal
numbers of self-sustaining oscillations with the real parts of the complex frequencies defining
the poles of Kg(w) in the upper frequency plane. The oscillations are sources of narrow
band sound, and are usually associated with a sequence of four or more “operating stages”.
For each stage the fundamental frequency is controlled by a feedback mechanism involving
the formation of discrete vortices near the leading (upstream) edge of the aperture, whose
interactions with a downstream edge produce impulsive pressures that trigger the cyclic
release of new vorticity {13, 14]. The amplitudes of the oscillations depend on flow speed,

and usually vary discontinuously as the system jumps to an adjacent higher or lower stage
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respectively as the flow speed increases or decreases [13 - 17]. The transitions typically
exhibit hysteresis, a downward jump being delayed to a lower speed than the corresponding

upward transition.

In this chapter this general linearized approach to the determination of the operating
stages is discussed for mean flow at very low Mach number over an aperture in a thin
wall and over a shallow wall-cavity, and also for the “edge tones” produced when a thin
blade of air impinges on a sharp edge [4, 18]. In all cases the complex frequencies actually
correspond to eigenvalues of an integro-differential equation that describes (in the linearized
approximation) the motion of the shear layer when approximated by one or more vortex
sheets. For wall apertures and edge-tones the eigenvalues coincide with the poles of the
Rayleigh conductivity of the structural “window” spanned by the shear layer or jet. The
theory of self-sustained oscillations of the flow over an open, shallow wall cavity has received
relatively little attention at low Mach number; it is of special interest because feedback to
the cavity leading edge from vorticity interacting with the trailing edge effectively occurs
instantaneously, and the motion within the cavity can be regarded as incompressible,
thereby excluding an association of the periodic motion with an acoustic mode of the cavity.
Evidently, we must then have @ = 0, so that the conductivity of the cavity mouth vanishes

identically. In this case the eigenvalues are poles of the cavity drag coefficient.

The theory is described in detail §2 for the simplest case of flow over a rectangular wall
aperture. Edge-tones are investigated in §3, where the predicted operating stages are shown
to be in excellent accord with experimental data from several sources. In §4 predictions are
made of the operating stages of a shallow wall cavity at infinitesimal Mach number, and
shown to be in good agreement with experimental data for cavities in air extrapolated to

zero Mach number.
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2. APERTURE IN A THIN WALL

2.1 The equations of motion Consider low Mach number flow at high Reynolds number
over both sides of the rectangular aperture of Figure 1 in a plane, rigid wall. The mean flow
is parallel to the z;-axis with main stream velocities U, and U_ in the “upper” and “lower”
regions z3 2 + -;—d respectively. The aperture is aligned with sides of length L parallel to the
mean flows and of length b in the transverse (z3-) direction, so that the upper and lower

mouths of the aperture occupy the regions |z;| < s = L/2, 1o = +3d, |z3| < 1b. The shear
layers over each mouth are modeled by vortex sheets, and the fluid within the aperture (in

|z2| < 3d) is assumed to be in a mean state of rest.

Let the aperture be excited by a uniform, time-harmonic pressure differential [p,(w)]e=**,
and denote by (s(x1,z3)e~™* the respective displacements (in the zo-direction) of the upper
and lower vortex sheets from their undisturbed positions o = :i:%d. The Mach number
is small enough that the motion in the neighborhood of the aperture may be treated
as incompressible, so that the following linearized approximations for the perturbation

pressures above and below the wall are applicable [19]

P o= pr—po|wtily 0\ [ Gl dyidys , z2 > d/2
0z, 27|x — y| ’
_ . 0 2 C"(yla y3)
= p_+po (w +1iU_ 3301) e e— dydys , 22 < —d/2 (2.1)

where respectively y = (v, :t%d, y3), the integration is over the aperture cross-section, and
the exponential time factor e~ is here and henceforth suppressed.

For a thin wall, and when the wavelength of disturbances on the vortex sheets are large
compared to d, the vertical displacement of fluid in the aperture is independent of z,, i.e.

¢ = ((z1,z3) = (+(z1, z3), and the equation of motion of a “column” of fluid is

0%

@ = _[p]’ |$1| <s, |$3| < b/z,

Pod

where [p] is the difference in the pressures applied to the upper and lower ends of the

column at z; = £1d. Using (2.1) this equation becomes
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o aY yl,ya )dy; dys A _lp]
[(w+zU+——ax1> (w-l— iU, 63:1> ] 27r/ \/x1 PR + dw((x1, 73) o
(2.2)

Vortex shedding from the straight leading edges of the aperture (at z; = —s) tends to
produce strongly correlated motions of the vortex sheets at different transverse locations zs,
so that in a first approximation ¢ may be regarded as independent of x3. The integration in
(2.2) with respect to y3 may then be performed explicitly; if the equation is also integrated
over —b/2 < x3 < b/2, it can be re-cast in the dimensionless form:

8\’ 8\’
(0 + za—€> <U + m-éz)

[ 2l —n+ £ mydn - T2 = 20° (23)

where
—2/70“}25((6)
Z(& , 2.4
== (2.4
is dimensionless, and
o=ws/Uy, p=U_[Uy, E=11/5, n=1y1/5, (2.5)

L&) = —In{b/s + VI(b/s)* + (€ = n)’]} + VAL + (s/0)*(§ = m)*} = (s/b)I§ —nl-  (26)

Equation (2.3) can be integrated with respect to the second order differential operator on

the left by using the Green’s function

G(f, 17) _ 1 ) (H(§ _ n)ei0+(f—77) + H(n _ E)eia—(f‘n)) , (27)

20(1—p

which is a particular solution of

(o))

69

G(&,n) =6(6 —n).
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In these formulae, H(z) is the Heaviside unit function (= 0, 1 according as z 2 0), and o

are the Kelvin-Helmholtz wavenumbers (8]

141
= . 2.
o U(l:i:i,u) (2.8)

Hence, Z is found to satisfy the integral equation

d

/_ 11 Z(n) [m |€ — |+ L(&,n) - 27TU2EG(§, n)] dp+ A+ LA e =1, €] <1, (2.9)

where Ay are constants of integration.

This equation is readily solved by the collocation procedure described by Scott [20] for a
vortex sheet over a circular aperture. The values of A are fixed by imposing the Kutta
condition that the vortex sheets leave the upstream edges smoothly, i.e. by requiring that
¢ =090¢/0¢ =0 as § = —1 [21]. Potential theory then implies that the displacement has a
mild, but integrable singularity at the downstream edge (£ = 1), which is the linear theory

representation of the large amplitude edge motion observed in practice.

2.2 The Rayleigh conductivity The volume flux is calculated from Q(w) =
—iwb [°,{(z1) dz,. The definition (1.1) and equation (2.4) therefore supply the following
expression for the Rayleigh conductivity in terms of the solution Z of (2.9).

_7rb 1

Kp=——
R 2 Ja

Z(n) dn. (2.10)
Ky is a complex valued function of w that also depends on the wall thickness ratio d/L, the
aspect ratio b/L, and the velocity ratio p = U_/Us,.

It is convenient to set

Kr(w)/b = Tr(w) — iAp(w), (2.11)

‘where Tg(w), Agr(w) are real. Figure 2 illustrates their dependence on ws/U for the case
of one-sided flow where Uy = U, U_ = 0, when b/L = 2 and for different wall thicknesses.
The changes with d/L are relatively insignificant until d/L exceeds about 0.2. The real

part T'r(w) determines the reactive response of the aperture to an applied pressure [p,], and
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hardly varies with increasing d/L; the imaginary component Ag(w) is positive when ws/U
is less than about 1.5 where, according to equation (1.2), the forced motion in the aperture
is damped by vorticity production [19]. At larger values of ws/U, where Ag(w) < 0, energy
is extracted from the mean flow and the perturbations grow. Figure 2 suggests that the
magnitude of this negative damping at higher frequencies decreases as the wall thickness
increases. However, this instability is only conditional, in that oscillations of frequency w do
not persist and continue to grow once the exciting pressure [p,]e** is removed. Absolute

instabilities of the aperture flow are governed by the singularities of Kp(w) in Im(w) > 0.

These singularities are simple poles, and correspond to eigenvalues of the integral
equation (2.9); they are a fundamental attribute of the shear layer, being independent of
the assumption that the driving pressures py are uniform (when [p,] is an arbitrary function
of the streamwise coordinate £ the right of (2.9) is replaced by a function of &). To see this,
consider the limiting process whereby the integral in (2.9) is first discretized by using, for
example, a Gauss integration formula that expresses it as a sum of terms evaluated at N
lattice points & (1 < ¢ < N), where §; = -1+4+6, &y =+1—46,and § — +0 as N — oo.
The Kutta condition is imposed by setting Z; = Z, = 0, where Z; = Z(§;). The discrete

form of (2.9) can then be written form

N
Y A2 =1 (2.12)
i=1
where 2, = A, Zo = A_, and Z; = Z; for i > 3. For each fixed 1,
Aiy = €78, Ay = 78,

and the coefficients A;; (j > 3) include similar terms, but depend on the integration scheme
used to approximate the integral. The eigenvalues of (2.12) are the (generally complex)

roots ws/U, of

det(A;;) = 0. (2.13)

Since the integral (2.10) defining Kr(w) may be approximated by the same Gaussian
integration formula, it follows from Cramer’s rule [22], as N becomes large, that Kp(w) is

regular except for simple poles at the roots of (2.13).
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This conclusion can be verified directly when b/L > 1 and d = 0. In this case equation
(2.9) can be solved analytically, and the conductivity determined in the form [19]

b
KR ™ 57 (o) + n(@b/eD)}’ (2.14)
where
Flo) = —o1Jo(0-)[Jo(o4) = 2W(o4)] + 0-Jo(o4)[Jo(0-) — 2W(0-)] (2.15)

T W (o )Jolas) — 2W(a2)] = 7 W (02 dalo-) — W (o))
W(z) = iz[Jo(z) — iJ1(z)], Jo and J; are Bessel functions, and e ~ 2.718 is the expon:ntial

constant.

The approximation (2.14) is applicable when b/L exceeds about 10. Because of the
logarithm in the denominator the positions of the poles do not vary rapidly with the
aspect ratio. Figure 3 illustrates how the the first four instability poles of (2.14) (that
determine the first four operating stages) vary with the velocity ratio u = U. /U, for the
“two-dimensional” case b/L = 500. For one-sided flow (when U_ = 0) the poles lie roughly
along a ray making an angle of about 45° with the real axis (a related set of poles, with
equal and opposite real parts lie along the image of this ray in the imaginary axis). As
U_/U, increases the poles approach the real axis, and ultimately, when U_/U; = 1, they
have all crossed into the lower half plane. In this limit the mean velocities are the same on
both sides of the wall, there is no mean vortex sheet across the aperture in the undisturbed
state; the motion is then absolutely stable.

The effect on the poles of finite wall thickness (d/L # 0) can be determined by solving
equation (2.13). Confining attention to one-sided flow (U, = U, U_ = 0) it is found [23]
that, as d/L increases from zero the poles labelled U_/U, = 0 in Figure 3 move towards the
imaginary axis, and that their real parts become approximately equal when d/L exceeds
about 0.4. However, the thin wall approximation requires d/L to be small, and probably
breaks down before this limiting behavior is attained. If the real part Re(w) = 2nf of
the pole at w is identified with the frequency f of a possible self-sustaining oscillation,
these results determine the dependence of the operating stage Strouhal numbers fL/U on
wall thickness, as shown in Figure 4 for b/L = 500. When d/L is very small successive
Strouhal numbers differ by about 0.5, but this difference rapidly decreases when d/L > 0.1.
Predictions for smaller aspect ratios /L are qualitatively and quantitatively similar, and

will not be given here.
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3. EDGE TONES

3.1 Thin jet approximation Edge tones are generated by a low Mach number stream
of air issuing at velocity U from a thin-walled rectangular duct of height d and width b,
where b 3> d (see Figure 5). The duct is assumed to be symmetrically located within a
semi-infinite rectangular slot of equal width in the rigid plane z; = 0, with its open end a
distance L = 2s from the end of the slot, upon which the jet impinges. Take the origin of
coordinates on the centerline of the jet, midway between the orifice and the edge, with the
z1-axis in the flow direction, so that the edge is at =, = s, |z3| < b/2.

The edge tone frequencies correspond to poles of the Rayleigh conductivity of the
“window” z, = s, |r3] < b/2 connecting the “upper” and “lower” fluid regions. These
poles are the eigenvalues of the equation of motion of the jet. In the thin jet approximation
(which is analogous to the thin wall theory of §2) the wavelengths of disturbances are
assumed to be much larger than the jet thickness d, and the equation determining the

vertical displacement ¢ of the jet (in the z,-direction) is approximated by

8 8\’
pod (5 + Ué’ﬁ) ¢==p), |zl <s, |os| < b/2, (3.1)

where [p] is the net pressure difference between the upper and lower surfaces (z; ~ +1d) of
the jet. In this equation it is assumed that the mean jet velocity U is uniform across the

jet, and the gradual increase in jet thickness across the window is ignored.

When the motion in the immediate neighborhood of the window is regarded as
incompressible (and in the absence of external forcing), the pressure perturbations in
Ty 2 £ %d, jusf above and below the jet, can be expressed in the forms given in equation
(2.1) with U, = U_ = 0 and px = 0 where now the integrations are over the planes
Ys = i%d, including the sections |y;3| > %b of these planes to the sides of the main jet stream.
When d is much smaller than either b or L the pressures on the upper and lower surfaces of
the jet can be approximated by setting ( = 0 outside the window. If the spanwise variation

of ¢ is neglected (as in §2), transverse motions of the jet are then governed by the equation

(o+z—) C—%—S/ ¢(m)(In | =1l + L(&,m)) dn =0, (3.2)

where 0 = ws/U, £ = x1/s, n = y1/s, and L(£,7) is defined as in (2.6).
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A first integral of this equation is

£) + / n) dn+ (1 + EXg)eE = 0, (3.3)
where

Kem =222 [ (€= N (mlx—nl+ L0~ m)e a,

and A;, Ay are constants of integration which are determined by the thin jet approximation
to the Kutta condition: ( = 9¢/0& =0 as £ — —1.

3.2 The edge tone frequencies The eigenvalues ws/U of equation (3.3) are given by
the roots of equation (2.13) as N — oo, where the matrix .A4;; is defined by the procedure
described in §2 for the wall aperture, with A;; = €% and A;y = &e™%. The calculation has
been performed for 5 < L/d < 50, for different fixed values of the “window” aspect ratio
b/L. The real part of a root in Im(w) > 0 is interpreted as the frequency f = Re(w)/27
of a possible edge tone. As L/d varies for each fixed value of b/L, the roots are found to
lie along a succession of discrete bands in the complex plane [18], illustrated in Figure 6
for the quasi-two-dimensional case b/L = 500. Successive bands correspond to the edge
tone operating stages, in each of which the Strouhal number fL/U is a smoothly varying
function of L/d. The solid circles in Figure 7 represent calculated values of the first stage
Strouhal number plotted against L/d for the two aspect ratios b/L = 0.5 and 10. For
fixed b/L, the points are collinear when L/d is large, and the solid lines in the figure are

rectilinear approximations defined by

f;JL a\/z, Ljds 1, (3.4)

where values of the constant « are given in the figure.

Similar asymptotic approximations have been derived by Holger et al [10] and Crighton
[24] from two-dimensional models of the jet-edge interaction (i.e., for b/L — 00). The
corresponding limiting behavior in our case is depicted by the broken straight line in Figure
7 (calculated from (2.13) by setting b/L = 500), for which o ~ 1.76.

Measurements of the Strouhal number dependence on L/d for the first four operating

stages (the only ones observed in practice) have been compiled by Holger et al [10]
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from several different investigations of nominally two-dimensional jet-edge interactions.
Representative averages of this data are plotted as solid circles and squares in Figure 8; any
significant spread about the average is indicated by a vertical bar through a data point.
The solid curves are the variations of fL/U = Re{ws/nU) predicted by equation (2.13)
for b/L = 500; these are in excellent agreement with experiment except for the first stage,
where most data points are confined principally to the region L/d < 10, where thin jet

theory is not applicable.

The following generalization of (3.4) (derived in [18] from a nonlinear model of the

jet-edge interaction)

fLJU = 0.92(d/L)Y?(n + 0.54)%2, (3.5)

agrees with the calculated and measured Strouhal numbers for all of the edge tone operating
stages. It is plotted as the dashed lines in Figure 8 for the operating stages n =1 to 4, and
is in exact agreement with linear theory for L/d > 1.
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4. THE SHALLOW WALL-CAVITY

Acoustic tones generated by high speed flow over a rectangular wall cavity have been
studied extensively, principally for cases where the mean flow Mach number M = U/c, > 0.2
(where ¢, denotes the free stream sound speed) because of its relevance to vibration problems
experienced by exposed aircraft structures [2, 7, 13 - 17, 25 - 27|. Theoretical progress
has been limited, however, and none of the existing models is applicable at very low Mach
number when the cavity depth £ (see Figure 9a) is very much smaller than the acoustic

wavelength [28].

Suppose the cavity is of length L (= 2s) in the streamwise direction, let b denote its
transverse dimension (out of the plane of the paper in Figure 9a), and take the coordinate
origin in the centre of the cavity mouth. At very small Mach numbers, when the convection
of sound by the mean flow can be ignored, the acoustic pressure at large distances from the

cavity can be expressed in the form

p(x’ t) ~ 27f|0x|% U2(y7t - |X - Y|/Co) dyldy3’ as |X| — 00, (41)

where v, is the fluid velocity in the z,-direction normal to the wall, and the integration
is extended over any section of the plane y, = 0 spanning the mouth. When the acoustic
wavelength > L or b, this expression would normally be representative of a monopole
source of sound, whose strength is the volume flux @ =~ [ v,(y, [¢]) dy1dys evaluated at the
retarded time [¢] =t — [x|/c,. However, at very low frequencies (smaller than the Helmholtz
resonance frequency [29]), the motion within the cavity becomes indistinguishable from
that of an incompressible fluid, and there can be no net flux through the mouth (@ = 0).
The cavity then radiates as a dipole whose pressure field is determined by the first non-zero

term obtained by expanding the integrand of (4.1) in powers of y/c,:

~ T OF; .
poot) ~ gt sl lxfe) Il oo

| Ov ,
Fj = po/yja—;(_y,t) dyldy3 (] =1lor 3), (42)

where the integration is over the cavity mouth. The axis of the dipole is parallel to the

wall, and its strength F is the unsteady drag exerted on the fluid by the cavity.
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When Q = 0 a uniform pressure p,(t) applied (in 2, > 0) in the vicinity of the cavity
cannot exert a drag force, nor any motion of an initially undisturbed shear layer over
the mouth. The simplest disturbance that can induce drag is a tangential pressure force
—0p,/0z;. Consider, in particular, a uniform pressure force applied in the direction of the
mean flow (the z;-direction); then F = (F,0,0), and by analogy with equation (1.3) a drag
coefficient D(w) can be defined by

Fi(t) = - / " D)y (w)e ™" dw, (4.3)

~00
where p}(w) = dp,(w)/0z; is independent of x. When the shear layer is approximated by a

linearly disturbed vortex sheet, the frequencies of self-sustained radiation from the cavity

are determined by the poles of D(w) in Im w > 0.

The motion of the vortex sheet can be investigated by the method of §2. When its
displacement from z, = 0 is regarded as independent of the spanwise coordinate z3,
equations (4.2) and (4.3) imply that

D) = 222 [* victw) do, @)

where ((yi) is the displacement produced by the uniform pressure gradient p}(w).

To simplify the calculation the direct influence of the cavity base (at zo = —£) on the
motion of the vortex sheet is neglected by assuming that ¢ > L. This is done by considering
first compressible motion within the cavity (for which @ # 0) and subsequently obtaining
the solution for incompressible cavity motion by taking the limit wf/c, — 0. When wf/c,
is small, the motion of the sheet will excite acoustic depth modes in the cavity, which vary
only with 5. The condition that the normal velocity must vanish at o = —¢, implies that
the pressure p_ just below the cavity mouth produced by a depth mode of frequency w is
given by [29]

_ —10CoQ

p-=— cot(k,2), (4.5)

where A = bL is the cross-sectional area and, provided thermo-viscous losses at the interior
acoustic boundary layers are ignored, k, = w/c, is the acoustic wavenumber. If the motion

near the vortex sheet is regarded as incompressible (as in §§2, 3), the small influence of
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damping by the radiation of sound into the exterior fluid can be included by taking the mean
pressure above the cavity to consist of the applied component p, (which is assumed above
to be a linear function of z;) together with a uniform pressure wk,p,Q /27, which vanishes
as ¢, — oo (the incompressible limit), and actually corresponds to the first compressible
term in the expansion of (4.1) in powers of w|x|/c,. By taking p, = 0 at z; = 0, we can

then write

Dy = Z1P, + WKoPoR/27. (4.6)

The fluctuating pressure above the vortex sheet, near the mouth is given by the first of
equations (2.1). When ( is independent y; the pressure on the upper surface of the vortex

sheet, averaged over the span, therefore becomes

s

2 2 1
p=pet 20 (owig) [ co)(mle=nl+Llem)an = len/sl <1, (@)

where the notation is the same as in §§2, 3 and £(&,n) is defined as in (2.6).

Similarly, because ¢ does not depend on z3, the motion close to the mouth just below the
vortex sheet can be calculated by conformal transformation, by expressing it as an integral
involving the potential of a line source injecting fluid into a semi-infinite, uniform duct.
This procedure yields the following expression for pressure on the lower surface of the sheet:

p=p- =22 [ cop(mle—nl+Ln) dn, lel <1, @8)

s

where

) —in [4sin{vr<s DL n)/4}l |

The equation of motion of the sheet now follows by equating the pressures (4.7) and
(4.8), and can be cast in the form

[02 + (o + ia%)z] /_t((n)(ln I€ =l + L(&m)) dn

vt [ cm(eden - ) = TP g <1 )
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Integrating with respect to the differential operator in the square brackets (using the
Green’s function (2.7) with g = 0), we find

[ o (e =l + £6,m) + C(E ) dn+ Ay 4 X eo-E = F(@), Jel <1, (410

where F(£) is a known linear function of £ which is a particular integral of the right
hand side of equation (4.9), Ay are constants of integration, o4 are Kelvin-Helmholtz

wavenumbers defined by (2.8) with p = 0, and

& 3 / (L(A, 77)) exp {ia(é - ) —ol¢ - ,\|} d\

To solve equation (4.10) we set

: '
‘. z7r2¢3)7:z4 7, — 27:;2 Z (4.11)
where R4 = ik,/2m — cot(k,£)/koA is the acoustic impedance of the cavity mouth in the
absence of flow [29]. The dimensionless displacement Z; is the solution of (4.10) satisfying
the Kutta condition at £ = —1 when J = 1, and Z, is the corresponding solution when
F =€ —i/o. These solutions can be used to evaluate the drag coefficient D(w) from the

definition (4.3) and the volume flux @ = —iwb [*, ((y1) dy; in the forms

7bs (mb/2)Ra[[1 M2 — I, My] — M, _ (imbspl,/2pow) I

D= 1— (7b/2)Ral; Q=TT b2\ RAL

(4.12)

where

1 1
Ia=/_1Za(n)dn, Ma=/_1nZad17, a=1or?2.

The values of the moments I,, M, depend on the shape of the cavity and on the
hydrodynamic flow in the mouth, but are independent of fluid compressibility (i.e., of x,£).
Hence, since the acoustic impedance R4 — oo in the limit s, — 0 of incompressible cavity
flow, it follows that  — 0, as expected, and that the drag coefficient D approaches the

limiting value given by

D _ M1[2 — MgIl
(7Tb82/2) B Il

= I'p(w) — iAp(w), (4.13)
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where I'p and —Ap are nondimensional real and imaginary parts of D(w).

The calculated variations of I'p(w) and Ap(w) with real values of ws/U are shown in
Figure 9b for a cavity of aspect ratio b/L = 1. It follows easily from the definition of the
drag coefficient D that the cavity absorbs energy from the applied pressure gradient p;, when
A(w) > 0, i.e. when ws/U is less than about 2.8. The motion is unstable, however, since
D(w) has poles in Im(w) > 0 which occur in a sequence of bands (analogous to those shown
in Figure 6 for the edge tone) as b/L varies. The corresponding variations of the Strouhal
number fL/U = Re(ws/n) are illustrated in Figure 10 for the first four operating stages.
fL/U increases very slowly with the aspect ratio, in broad agreement with observations
reported by Ahuja and Mendoza [17], and jumps in value by about % between adjacent op-
erating stages. Table 1 reveals further an excellent numerical correspondence with Strouhal
number estimates (in the third column) obtained by extrapolating to zero Mach number

experimental results for shallow cavities presented by Ahuja and Mendoza in their Figure 2.2.

stage | Theory: b/L =5 | Ahuja & Mendoza [17]
n FLJU fLJU
1 0.78 0.7
2 1.37 1.1
3 1.92 1.7
4 2.45 2.5

Table 1.
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5. CONCLUSION

The incidence of unstable shear layers or jets on edges and corners is frequently a source
of narrow band sound, the production of which is associated with the formation of discrete
vortices whose interaction with the structure produces impulsive pressures that trigger the
formation of new vortices and complete a self-sustaining feedback cycle. In this chapter
a review has been given of the linear theory of these oscillations for shear flows over wall
apertures and cavities, and for the jet-edge interaction. The feedback operating stages are
determined by complex eigenvalues of the equation of motion of the shear layer or jet. For
wall apertures and jet-edge interactions, these eigenvalues coincide with the poles in the
upper half of the complex frequency plane of the Rayleigh conductivity of the ”window”
spanned by the shear flow; for shallow wall cavities (where there is no net volume flux

through the mouth of the cavity) they are poles of the cavity drag coefficient.

It is argued that the correct interpretation of linear theory is that the frequency of a
possible self-sustained oscillation of the real system is equal to the real part of the complex
frequency at a pole. This is because nonlinear mechanisms that control the amplitude of
the oscillations do not significantly affect their frequencies, which are determined by the
convection velocity of the vortices, and experiment shows this to be effectively independent
of amplitude. Indeed, the linear theory predictions given in this chapter of the Strouhal
numbers of a shallow wall cavity in flow at infinitesimal Mach number are in excellent
~accord with extrapolations to zero Mach number of data from measurements in air. Our

predictions for the edge tone agree with data from several independent experimental

investigations.
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Figure 1. Two-sided flow past a rectangular aperture in a rigid plate of thickness d.
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Figure 2. The dependence of Kp(w)/b = I'g(w)—iAg(w) on frequency when U_ = 0,
for b/L = 2 and for d/L = 0, 0.05, 0.2, 0.5.
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Figure 3. Poles of Kr(w) in the complex frequency plane for d/L = 0, b/L = 500
and 0 < U_/U+ < 1.
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Figure 4. Strouhal number dependence on wall thickness for one-sided flow (U- = 0)
when b/L = 500.
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Figure 5. Jet-edge interaction.
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Instability poles: jet-edge interaction
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Figure 6. Two-dimensional edge tone poles.
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Figure 7. Strouhal number dependence on L/d for the first edge tone operating
stage for different values of b/L: e e e e o, prediction of equation (3.3); the
straight lines are best fits of the formula (3.4) for L/d > 20.
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Figure 8. Comparison of edge tone Strouhal numbers predicted by equation (3.3)
for b/L = 500 ( ) with representative averages of data from Holger
et al [17]. The broken lines are predictions of (3.5).
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Figure 9. (a) Rectangular wall cavity. (b) Real and imaginary parts of the drag
coefficient D(w) for real w when the cavity aspect ratio b/L = 1.
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Figure 10. Predicted dependence of the shallow cavity Strouhal number on the aspect

ratio b/L at infinitesimal mean flow Mach number.
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CHAPTER 4

THE INFLUENCE OF SHAPE ON THE RAYLEIGH CONDUCTIVITY
OF A WALL APERTURE IN THE PRESENCE OF GRAZING FLOW

Sheryl M. Grace, Kelly P. Horan
and M. S. Howe
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SUMMARY

A numerical investigation is made of the influence of grazing flow on the Rayleigh conduc-
tivity Kr of an aperture in a thin rigid wall. The Mach number is sufficiently small for the
local motion near the aperture to be regarded as incompressible, and the Reynolds number
is taken to be large enough for the aperture shear layer to be modeled by a vortex sheet. The
vortex sheet 7 assumed to be linearly perturbed from its equilibrium position by a small
amplitude, time-harmonic pressure, and Kg is determined from the ratio of the resulting
aperture volume flux to the applied pressure. The frequency dependence of Kg is computed
for a variety of aperture shapes for both one-sided and two-sided flows. For apertures of
equal maximum streamwise dimension in one-sided flow, the Strouhal number range within
which perturbation energy is extracted from the mean flow (where Im Kgr > 0) is found
to be effectively independent of the aperture shape. The frequency of the first “operating
stage” of self-sustained (unforced) oscillations of the aperture shear layer lies approximately
in the center of this range, and is the minimum frequency at which narrow band sound is
generated by nominally steady flow over the aperture. The numerical predictions are shown
to satisfy the reverse flow reciprocal theorem (Howe et al. 1996), according to which Kg
is unchanged when the mean flow directions on both sides of the wall are reversed (when

vortex shedding occurs from the “opposite” edge of the aperture).
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~ 1. INTRODUCTION

A time harmonic pressure load (pj —p; )e~! is applied across an aperture in a thin rigid
wall, which coincides with the plane z, = 0 of the rectangular coordinate system (z1,Z2, T3)
(see Figure 1). The pressures p}, p; are uniform respectively in z, 2 0, and produce a

volume flux through aperture in the positive z,-direction equal to Qe™**.

The Rayleigh conductivity is defined in terms of these quantities by the ratio (Rayleigh
1945) '

Kr(w) = ij’f’f_ | (1.1)

where p, is the mean fluid density, which is assumed to be constant. Conductivity has the
dimensions of length; for an ideal, incompressible fluid (in the absence of mean flow) its
value is entirely determined by the geometric shape of the aperture, being equal to 2R for
a circular aperture of radius R, and approximately equal to 2 X / (apérture area/7) for an
arbitrary, non-elongated aperture. In a real fluid KR is generally a complex function of the
frequency w, ai;ld energy of the applied pressure field (an incident sound wave, for example)

is dissipated in the aperture at a rate

= —%Re(Q*[pS’ -p;]) = —Ilni{%u-)ilpj -p; %, (1.2)
where the asterisk denotes complex conjugate (Pierce 1989). The damping is negative (Il < 0) -
if Im’{KR(w)} > 0 (for w > 0),' which can happen in the presence of mean flow over one or
both sides of the wall. The forced motion in the aperture then grows at the expense of mean
flow kinetic energy (Howe et al. 1996) via coupling facilitated by unsteady vortex shedding
from the aperture leading edge. The phase of the interaction of this vorticity with the trailing
edge (after convection across the aperture) determines whether or not perturbation energy

is extracted from or ceded to the mean flow.

The negative damping of forced motion in the presence of flow is related to the insta-
bility of the mean shear layer in the aperture (Lamb 1932) and to the possible occurrence
of self-sustained oscillations that produce narrow band sound (Rossiter 1964; Howe et al.

1996; Rockwell 1983; Blake & Powell 1986). Such oscillations are maintained by feedback,
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involving the periodic generation of pressure “waves” at the trailing edge by interaction with
shed vorticity, which triggers the cyclic formation of new vorticity at the leading edge. The
oscillations are reinforced and sustained for a set of discrete values of the Strouhal number
based on the streamwise length of the aperture and the mean flow velocity (Powell 1961;
Rossiter 1964; Blake & Powell 1986). A quantitative understanding of the feedback mecha-
nism is desirable because of its importance in a diverse rahge of physical systems including,
for example, perforated baffles in heat exchangers, depressions in submarine and ship hulls,
computer boards with closely spaced chip carriers, aircraft control surfaces and fuselage

openings, and flow-through resonators of automobile mufflers.

To obtain a complete picture of the motion produced by the applied pressure, or of the
frequency and amplitude of the self-sustaining oscillations, it is necessary to solve the nonlin-
ear Navier-Stokes equations. ‘However, an accurate first approximation to the forced motion
and to the frequencies of self-sustained oscillations is furnished by a linearized treatment of
the shear layer motion (Howe 1997a). This is because both the feedback and non-resonant
energy transfers are governed primarily by the convection speed of vorticity across the aper-
ture, which experiment shows to be essentially independent of the amplitude of the shear

layer motion (Powell 1961; Holger, Wilson, & Beavers 1977; Rockwell 1983; Blake & Powell /
1986).

Approximations of this kind have been considered by Howe (1981a,1981b) for slot-type
apertures of very large aspect ratio. The Reynolds number was taken to be sufficiently large
that turbulence-free mean streams over the wall could be regarded as uniform, and the mean
shear layer in the aperture was modeled by a vortex sheet that is linearly disturbed from
its mean position. The same method was applied by Scott (1995) (see also Howe et al.
(1996)) to a circular aperture, and by Howe (1997a, 1997b,1997¢c) to 'rectangular apertures
of arbitrary aspect ratio. The mean flow Mach number was assumed to be small enough for
the aperture motion to be regarded as incompressible. Viscosity was ignored, except for its
role in shedding vorticity from the leading edge of the aperture, which was incorporated by
application of the Kutta condition. Howe (1997a) showed that linear theory predicts that
Kgr(w) has simple poles in Im w > 0, and that the real part of the complex frequency at a

pole corresponds to the frequency of an “operating stage” of the self-sustained oscillations.

In this paper the numerical method of Scott (1995) is extended to determine the ef-
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fect of shape on the conductivity of an aperture in a thin wall in the presence of grazing
flow. Detailed comparisons are made of the conductivities for shapes including the circle,
square, triangle, “cross”, and a sqﬁare whose leading or trailing edge has triangular serrations
(“crown”). When the Strouhal number wL/U is defined in terms of the maximum stream-
wise dimension 2L of the aperture and a mean flow velocity U, it is shown that aperture
shape has effectively no influence on the Strouhal number ranges in which forced oscillations
are unstable (i.e., where II(w) of (1.2) is negative). According to Howe (1997¢) this indicates
that the minimum Strouhal number of self sustained oscillations (i.e., of the first operating
stage) does not vary significantly with geometry. The calculations also furnish direct nu-
merical confirmation of reverse flow reciprocity (Howe et al. 1996), namely, that the value
of Kp(w) is uhchanged when the direction of the mean flow is reversed. This remarkable
theorem implies, for example, that the conductivity of a square aperture with a serrated
leading edge is unchanged when the flow is reversed, such that shed vorticity from a straight
leading edge now impinges on the serrations. This result could be important in assessing

the efficiency of “spoilers” intended to reduce the coherence of sound generated by vortex

shedding,.

The numerical problem is formulated in §2, and applied in §3 to determine the conduc-
tivities of apertures of various shapes in the presence of mean flow over one or both sides of

the wall. A comparison is also made with the approximate theory of Howe (1997a). Reverse

flow reciprocity is discussed in §4.
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2. THE GOVERNING EQUATIONS

2.1 Equation of motion of the vox:tex sheet

The motion on either side of the aperture induced by the perturbed motion of the vortex
sheet is regarded as incompressible and irrotational, and .is expressed in terms of velocity
potentials @* respectively in the regions z, 2 0 “above” and “below” the wall. The potentials

satisfy Laplace’s equation

V20t =0, z,20, (2.3)

and the associated pressure fluctuations p* are given by the linearized Euler equation in the

form

p" = ipo(w + iU — 0 )ot,  z,>0 (2.4)
8(111
- : 9 \a-
p~ = ipo(w+iU"3—)@7, 2 <0. (2.5)
’ 6371

The equation of motion of the vortex sheet is obtained by equating the net pressures on

opposite sides at the undisturbed position of the sheet, i.e.,

: . 0 - . d ...
19;'“Jrzpo(wJrzlf’a—ml)<1>+ =p; +ipo(w +iUT 507, 2 =0, (2.6)

where the field point (21,0, z3) lies within the aperture.

The solution of Laplace’s equation (2.3) can be written

00%/0
27,-/ / / y2 dy:dya, y = (v1,0,¥3), z22 0, (2.7)

where the normal derivatives &%/ 6y2 are evaluated on y, = £0 (Hildebrand 1976). These

derivatives are related to the displacement ¢ of the vortex sheet (in the y, direction) by

od*

0
e . :E_ —
572 i(w+:U Byl)c , Y2 = %0,

which permits equation (2.6) to be cast in the form
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+ 1
po po — (

Po 2r

. _iz rr ad 2 C(ylay3)
w+zU. 6:1:'1) +(w+:U 8.7:1)] s -yl dy dys (2.8)

where the integration is now restricted to the aperture opening S.

This equation is simplified by introducing the nondimensional notation

- XY = x/Ly/L (2.9)

c = wL/U* (2.10)
CP0‘72U+2

2= - (21)

where ¢ is the Strouhal number and 2L is the maximum streamwise length of the aperture.

By integrating (2.8) with respect to the second order differential operator in z; on the right

hand side, we can then write

z(",Ys)

S X -Y| dYidYs = 1 + o Xa)e' Xt + B(X3)e ™, X5 = 0. (2.12)

Here, o2 are the nondimensional Kelvin-Helmholtz wavenumbers (Lamb 1932)

- wL(l+9) wL(1 — )

=G T o

(2.13)

o(Xs) and B(X3) are “constants” of integration that depend on the spanwise coordinate Xjs.
They may be interpreted as the amplitudes of instability waves of wavenumbers 012 propa-
gating across the aperture, their values being fixed by application of the Kutta condition at

the leading edge (Howe et al. 1996; Scott 1995).

When the mean velocities are the same on both sides of the wall (Ut = U~) the wavenum-

bers o7 and o4 are both equal to o, and the right hand side of equation (2.12) may be replaced
by

1+ a(X3)e X + B(X35) XqeloX .
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2.2 The numerical procedure

Equation (2.12) is solved fénl the nondimensional displacement Z by introducing the
Cartesian grid shown schematically in Figure 2 and discretizing the integration over the
aperture. The displacement Z(Y;,Y3) is taken to be constant and equal to Z;; on the grid
cell centered on (Yi;, Ya;), but the kernel function 1/|{X — Y] is integrated analytically. The
Kutta condition is imposed by setting Z = 0 on the first two grid cells in each grid row of
constant Y3 (indicated in the figure by the asterisks), i.e., by demanding that Z,; = Z,; = 0;
this is equivalent to requiring that the displacement and streamwise derivative of the vortex
sheet vanish at the aperture leading edge. When this is done, Z;; and Z,; may be discarded
from the discretized equation of motion and their respective roles in the vector of unknowns
assumed by the corresponding instability wave amplitudes a(Y3;) and B(Y3;). The equation
is then solved for the Z;; by collocation, by requiring it to be satisfied at each lattice point
of the grid.

The definition (1.1) and the solution array Z;; then determine the Rayleigh conductivity
by |

Kn(w) ==L [ [ 2(%,%) d¥idYs
~rl Y ZiWi, (2.14)
i#1,2;5

where W;; denotes the area of the grid element centered on (Y1, Y3;).
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3. NUMERICAL RESULTS

The set of aperture shapes considered in this investigation is illustrated in Figure 3,
and includes the circle, square, ,c,rdss, two different forward (upstream pointing) and back-
ward (downstream pointing) facing triangles, and a “crown” (square with triangular serrated

leading or trailing edge). For each aperture the conductivity is calculated in the normalized

form

- Kp(w)/2L =T —iA,

for both one-sided flow (where U~ = 0), and for two-sided flow when Ut = U~.

The circular aperture was treated by Scott (1995), and his results have been used as
one method to validate the lintegration procedure. Chanaud (1994) discussed the cross-
shaped aperture in the absence of flow. The “crown” is examined because of its relevance
to applications in which it is desirable to create incoherent streams of vorticity by shedding
from a serrated edge. The computations are performed in single precision using a square
mesh discretization of equation (2.12). The validity of using single precision was tested by
calculating thé’cbnductivity for two-sided flow past a square aperture using both single and
double precisioh and comparing the results. The absolute difference between the real part of
the conductivity from the two calculations and the absolute difference between the imaginary
part from the two calculations are plotted in Figure 4. The maximum difference is 7 x 10™*
and the average absolute difference is approximately 2 x 10~*. Because this difference is so

small, there is no loss of information when performing the calculation using single precision.

The size of the square mesh elements is set by choosing the number of mesh elements
stretching between the leading and trailing edges along the centerline of the aperture. Figures
5 and 6 show the effect of increasing the mesh density on the calculations of the conductivity
for one and two sided grazing flow past a square aperture. (When the number of elements
increases from 30 to 60, this decreases the grid element nondimensional area from 4.4 x 1072
to 1.1 x 1072.) In these figures the calculated real and imaginary components, I and A,
of the conductivities for one-sided and two-sided flow are plotted against Strouhal number
o =wlL/U. Figure 5 shows that for the Strouhal numbers of interest in the one-sided flow

case the numerical results become completely grid indepeﬁdent at a grid corresponding to 50
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mesh elements in the streamwise direction. The two-sided flow case, which can be calculated

out to higher Strouhal number becomes grid independent when the grid has 60 elements in

the streamwise direction.

For the cases of both one-sided and two-sided ﬂow, the difference between the discretiza-
tions of 40, 50, and 60 elements are very small. Past this Strouhal number, a grid of more
than 70 elements must be used as the finer grids shift the results for the higher Strouhal
number to the left slightly. Because it was the point of this research to compare the con-
ductivity for several aperture shapes, we have used a discretization 40. The slight shift that
exists at the higher Strouhal numbers will be the same for all of the calculations and was a

small trade-off for a large speed up computationally. If a discretization higher than 40 was

used for a specific case, it will be noted.

3.1 One-sided mean flow

The real and imaginary components, [' and A, of the conductivities for one-sided flow
past the different apertufe shapes are plotted against Strouhal number w in Figure 7. All
of these plots Fre qualitatively the same. In particular A > 0 at low frequencies, so that
forced motion of the aperture at such frequencies is always damped (see equation (1.2)), the
energy of the applied pressure force (produced by an incident sound wave, for example) being
lost to the mean flow. The damping is negative (A < 0) over a band of higher frequencies,
wherein the mean flow releases kinetic energy when shed vorticity interacts with the aperture
trailing edge. In this case there would be a net gain in acoustic energy when the shear layer
is excited by sound. By invoking function theoretic arguments it can be shown (Howe 1997c)
that Kr(w) has a simple pole at a complex frequency in the upper half-plane whose real part
is approximately equal the real frequency at which A(w) is a minimum. The real part of
the frequency at this pole corresponds to the Strouhal number of the first operating stage
of self-sustained oscillations of the aperture shear layer (Howe 1997a). It is only weakly
dependent on aperture shape, since all of the minima in Figure 7 lie within the interval
2.5 < wL/U < 3.2. In particular, the conductivity of the square aperture with a serrated
leading edge (the “crown”) is practically the same as that for the straight-edged square.
A comparison of the conductivities for the forward and backward facing triangles indicates

that Kg(w) is unchanged when the flow direction is reversed. This reverse flow reciprocity is
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discussed further below. The calculation of the conductivity of the smaller triangle required

a mesh with 100 elements in the streamwise direction.

In the absence of flow Ra,yleigh (1945) showed that Kr/ V/A = constant, where A is the
aperture area. The result of normalizing Kr(w) in the same way in the presence of one-sided

flow is shown in Figure 8.

3.2 Uniform two-sided mean flow, Ut = U~

Figure 10 shows the calculated frequency dependencies of I and A when the mean flow
speed is the same on both sides and equal to U. The quasi-periodic behavior of these func-
tions confirms the earlier prediction of Scott (1995) for the circle. In this case, however, the
aperture motions are only conditionally unstable, in the sense that an incident perturbation
will grow by extracting energy from the mean flow provided A < 0, but there are no poles
in Im w > 0, so that self-sustaining oscillations are not possible, at least in the ideal limit of
a vanishingly thin wall (Howe 1997c). The minima of A occur at roughly the same values
of o for all of.the cases shown in the figures; this is also evident from Figures 11 and 12,
where the conductivities are normalized with respect to v/A. Again the agreement shown in
Figure 12 for corresponding forward and backward triangles is in accord with reverse flow
reciprocity. |

For regularly shaped apertures such as the square, the results indicate that Kp(w) is pe-
riodic at high enough frequency, and that the magnitudes of successive maxima and minima
are effectively constant. For those apertures whose streamwise dimension decreases contin-
uously with distance from the line of symmetry (the circle and triangle), the magnitudes
of successive maxima and minima decrease with increasing . For the cross-shaped aper-
ture, which has two very different streamwise length scales, successive maxima and minina
exhibit two distinct values which recur alternately as the frequency increases. In the case
of the “crown” shaped aperture, there are two dominant length scales, which are reflected
in the two alternating sets of values for the maxima and minima, in addition however, the

magnitudes of the peaks gradually decrease with increasing o.
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3.3 One-dimensional approximation to the aperture motion

Howe (1997b) has estimated the influence of mean flow on the conductivity of rectangular
apertures (with sides pafallel to the mean flow direction) by neglecting the dependence of the
vortex sheet displacement on the spanwise coordinate z3. The integro-differential equation
(2.8) can then be simplified by explicitly performing the integration on the right hand side
with respect to ys. When the equation is also integrated with respect to z3 over the span,

the analog of equation (2.12) assumes the one-dimensional form

1 ' . .
/ Z(Y) [In|Yi = Xu| + £(X0, Y1)] dYi + \e ¥ 4 X = 1, |X| <1, (3.15)
-1

where

. _2CPOU2U+2
2= o)
= —In{b/L + VI(B/L) + (X1 — Y1)}

‘C(Xlay'l)

+V/{1+ (L/b)* (X1 = Y1)’} = (L/b)| X1 = 1Al

12 are constants to be determined, and b is the span.

Equation (3.15) is solved by collocation; the values of Ay are determined by imposing the
Kutta condition at the upstream edge X; = —1 as before, and the conductivity is calculated
from

Kr= —%b _11 Z/(Y3) dY,.

Predictions of Kg(w) obtained in this way for a square aperture in one or two-sided grazing
flow are plotted as solid curves in Figure 13. The dotted curves in Figure 13 correspond
to the numerical solution of the full three-dimensional equation of motion (2.8) obtained
with a discretization corresponding to 60 mesh elements in the streamwise direction for the
one-sided flow case and 70 for the two-sided flow case. It is clear from the figure that the

one-dimensional approximation produces a good prediction to the motion of the vortex sheet
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in the mouth of the square aperture. The approximation does not work as well for lower.

aspect ratio apertures nor for apertures with tapered spans.
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4. REVERSE FLOW RECIPROCITY

Re.verse flow reciprocity (Howe, Scott, & Sipcic 1996) requires that the Rayleigh con-
ductivity at a given frequency w be unchanged in value when the directions of the mean
flows on both sides of the wall are reversed. The theorem has been verified in §3 for forward
and backward facing triangular aﬁertures.. In doing this we used a square element numerical
grid. It is important that the mesh be sufficiently fine to properly capture the dynamics of
shedding from the sloping edges of a triangle. This is clear from divergence of the numerical

predictions at the higher Strouhal numbers shown in Figure 9.

More dramatic confirmation of the theorem is exhibited in Figure 14, where the conduc-
tivities for a square aperture with either a serrated leading or serrated trailing edge (the
“crown”) are seen to be identical. This conclusion may be very significant for the design of
flow control devices that depend on the use of serrations to ‘break up” an organized flow in

e e . . .
an attempt to Tninimize coherent generation of sound and vibration.
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5. CONCLUSION

When a sound wave impinges on a wall aperture iﬁ the presence of .high Reynolds number
flow there is generally an exchange of energy between the sound and the flow brought about
by acoustically induced vortex shedding. For a small aperture, the motion in its immediate
neighborhood can be regarded as incompressible, and the interaction with the sound is

conveniently expressed in terms of the Rayleigh conductivity Kr.

In this paper Kr(w) has been computed for a variety of apertures in a wall of infinitesimal
thickness in the presence of high Reynolds number grazing flow. The shear layer in the
aperture is modeled by a linearly disturbed vortex sheet. For one-sided flow over apertures
with equal maximum streamwise dimension, the Strouhal number range in which energy
is extracted from the mean flow is found not to vary significantly with aperture shape.
The center of this range corresponds approximately to the frequenéy of the lowest order
“operating stage” of self-sustained (unforced) oscillations of the aperture shear layer, which

is therefore effectively independent of aperture shape.

Self-sustaining oscillations cannot occur in the ideal limit of a wall of zero thickness when
the flows are the sgme on both sides, although forced motion by an incident disturbance can
still induce vortex shedding and a positive or negative exchange of energy with the mean
flow. In such cases Kr(w) becomes essentially periodic when the Strouhal number exceeds
about 3, and the number of distinct values taken by the maxima or minima of the real and
imaginary parts of Kr turns ouf to be equal to the number of distinct streamwise length

scales that characterize aperture geometry.

The reverse flow reciprocal theorem requires the value of Kr(w) to be unchanged when
the mean flow directions on both sides of the wall are reversed. This is confirmed by our
computations, and is remarkable because the edges of the aperture at which vorticity is

generated and on which vorticity impinges are reversed in the reciprocal problem, and, the

respective geometries of these cases can be markedly different.
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Figure 1: Grazing flow past a wall aperture.
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Figure 2: Quadrature grid used to solve the integral equation; asterisks denote the elements
used to satisfy the Kutta condition.
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Figure 3: Aperture cross-sections studied. a) circle, b) square, c) cross, d) forward point-
ing triangle, e) backward pointing triangle, f) smaller forward pointing triangle, g) smaller
backward pointing triangle, h) crown.
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Figure 4: Effect of single precision vs. double precision numerical calculations.
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Figure 5: Dependence of Rayleigh conductivity calculation on grid resolution. One-sided
grazing flow past a square aperture.
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Figure 6: Dependence of Rayleigh conductivity calculation on grid resolution. Two-sided
grazing flow past a square aperture.




Report No. AM-98-029

6 : ]
5 H
J 4-circl N7 -
3 3 L
N d
‘5 1 ,/\; ~
Z 0flifoimi™
= <3/ A //
o -1 YA
S
3
5 . L et e
N 1l square | 2
Q 4 4
> P
= 3 1T
22 -
& o/ N A :
o -1 o’ ;
O,
ST i
5 e e~
Q ,].cross i
2 34— >
)
g 1 ,/j G
o ~ N
[} 1 ; : \‘
U .
2
3
\] 5 /.\\ l
Q 4l.ferwar L/
£ s -triangle —~
22 o
g1 AP
g 04~/ A l(,—
1
O, \//
3 T
0 05 1 15 2 25 3 35 4 45 5
o

Boston University, College of Engineering

Conductivity/2L Conductivity/2L

Conductivity/2L

Conductivity/2L

'
(3]

O = W AN

voooe
(VS S I

w

?—-Nw-h

e B S R A VAR VS I o e

' 0
N —

O o= W

'
—

3

kg

qmall forward B

small backward | - T

Crown

/ 2\

A
<

/

~B8

T
0 05

i
1 15 2 25 3 35 4 45 5
()

Figure 7: The Rayleigh conductivity for one-sided grazing flow past aperture with shapes
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ward triangle, and crown.
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Figure 8: Real part (top) and imaginary part (bottom) of the Rayleigh conductivity normal-
ized by the square root of the area for circle, square, cross, and crown apertures with flow
on one side.
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Figure 9: Real part (top) and imaginary part (bottom) of the Rayleigh conductivity nor-

malized by the square root of the area for the large and small, forward and backward facing
triangle apertures with flow on one side.
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Figure 11: Real part (top) and imaginary part (bottom) of the Rayleigh conductivity nor-

malized by the square root of the area for circle, square, cross, and crown apertures with
equal flow on both faces.
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Figure 12: Real part (top) and imaginary part (bottom) of the Rayleigh conductivity nor-
malized by the square root of the area for the large and small, forward and backward facing
triangle apertures with equal flow on both faces.
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Figure 13: Rayleigh conductivity for a square aperture with one-sided and equal two-sided
grazing flow calculated with the three-dimensional numerical method (dotted line) and the
approximate theory (solid line).
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Figure 14: Rayleigh conductivity for one-sided grazing flow past the crown shaped aperture.

Comparison of results for serrated edge at the leading edge (solid) and serrated edge at the
trailing edge (dots).
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CHAPTER 5

STABILITY OF HIGH REYNOLDS NUMBER FLOW
PAST A CIRCULAR APERTURE

Sheryl M. Grace, T. H. Wood
and M. S. Howe
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SUMMARY

An analysis is made of the canonical problem of flow at very high Reynolds number
past a circular aperture in a thin rigid wall. The motion is incompressible, and the shear
layer over the aperture is treated as a vortex sheet separating two parallel flows of unequal
mean velocities. Viscosity is neglected except for its role in shedding vorticity from the
upstream semi-circular edge of the aperture. Nominally steady flow is unstable, and often -
accompanied by large amplitude self-sustaining oscillations at certain discrete frequencies,
whose values are governed by a mechanism involving the periodic shedding of vorticity
from the leading edge of the aperture and feedback of pressure disturbances produced by
interaction of the vorticity with the downstream edge. Admissible frequencies are identified
with the real parts of complex characteristic frequencies of the linearized equation of motion
of the vortex sheet. These eigenfrequencies are also poles of the Rayleigh conductivity
of the aperture, and their dependence on the mean velocity ratio across the aperture is
calculated for the first four ‘operating stages’ of the motion. Results are presented in both

graphical and tabular forms to facilitate their ready incorporation into numerical models of
more complicated flow problems. The investigation completes the linearized study of this
problem initiated by Scott (1995), which dealt with forced, time harmonic oscillations of
the shear layer.
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1. INTRODUCTION

A-1* At very high Reynolds number the frequencies of sound generated by flow over a
wall cavity or aperture depend primarily on the streamwise dimension £ of the éavity or
aperture and on the mean flow Mach number (Blake and Powell 1986; Rockwell 1983).
Discrete tones (and harmonics) are generated within certain ‘operating stages’, each of
which corresponds to a continuous range of the Strouhal number fe/U, where f is the
dominant frequency of the sound and U is the free stream speed. A gradual increase or
decrease in flow speed is accompanied by discontinuous jumps respectively to a higher
or lower Strouhal number at certain critical velocities, which are usually larger for the
upward jump than for the corresponding downward jump. Similar abrupt transitions, also

exhibiting hysteresis, occur when the length £ is caused to vary smoothly.

Rayleigh (1926, §371) gave an explanation of the feedback mechanism responsible for
the sound that is close to that currently accepted and advanced by Powell (1961) and
Rossiter (1962). Vortices are formed within the unstable shear layer that spans the cavity
or aperture close to the ‘leading’ (upstream) edge. A vortex convects across the opening in
time ~ £/U,, where U, is about half the free stream speed U its arrival at the downstream
edge excites an impulsive pressure that closes the feedback loop, after travelling back across
the opening in time £/c,, by triggering the formation of a new vortex, ¢, being the speed of
sound. The permissible frequencies of the operating stages should therefore satisfy a phase
relation of the form

n/f=4/U.+28[c,, n=1,2,3, ... .

This equation is found to be generally applicable provided n is replaced by n — €, where

¢ < 1is a suitable empirical coefficient that depends on the detailed geometry of the
system (Rossiter 1962; East 1966; Heller and Bliss 1975; Komerath et al. 1987; Ahuja and
Mendoza 1995). In addition, however, the oscillations must also exhibit no net gain of over
a complete cycle, which implies that the effects of vortex growth in crossing the opening
must be compensated by a corresponding decay of the pressure pulse during its passage
from the trailing to the leading edge.

A proper nonlinear numerical treatment of the oscillatory flow based on the full
Navier-Stokes eqliations will automatically satisfy both of these conditions (e.g., Hardin
and Pope 1995; Jéng and Payne 1995; Tam et al. 1996), although most published results
are of limited validity and difficult to interpret. Two-dimensional schemes, in which the
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shear layer is modelled by line (‘point’) vortices, have successfully predicted low Mach
number operating stages for deep wall cavities, but the feedback in this case is controlled
by the acoustic response of the cavity rather than the hydrodynamic motion in the opening
(Bruggeman 1987; Bruggeman et al. 1989; Peters 1993; Kriesels ef al. 1995). The greatest
understanding of the role of hydrodynamic instabilities has come from analytical studies of
linearized, nominally time-harmonic motions of the shear layer. The zero-net-gain condition
cannot be satisfied by real frequencies when the phase change is calculated from a small
amplitude theory that expresses the motion in terms of linear theory eigenfunctions for a
uniform shear layer of infinite extent (see, for example, Tam and Block 1978; Crighton 1992;
Elder 1992). This is because the linear theory exponential growth of Kelvin-Helmholtz
waves on the shear layer is too large to be cancelled by the algebraic decay of the pressure
pulse. To obtain linearized predictions of the operating stage Strouhal numbers that agree
well with experiment (at least at low Mach numbers, Howe 1997), it is necessary to take a
complex valued frequency w, say, in the calculations, and identify the observed oscillation
frequency with Re w. The permissible complex frequencies for a wall aperture satisfy a
characteristic equation whose roots are the poles in the complex frequency plane of the
Rayleigh conductivity X(w) of the aperture (Rayleigh 1870; 1926, §304; Howe 1997); for a
shallow wall cavity the roots correspond to poles of an unsteady drag coefficient.

The characteristic equation for high speed, incompressible flow over a rectangular wall
aperture was investigated by Howe (1997). The shear layer was modelled by a vortex sheet,
whose integral equation of motion was solved by extension of the method developed for a
circular aperture and real frequencies by Scott (1995; see also Howe et al. 1996 and Chapter
4). The calculations were done by computing the conductivity X(w) and performing a
numerical search for its poles in the complex w-plane. Those poles in Imw > 0 were
identified with self-sustained oscillations of the shear flow, and the value of Rew at the pole
was interpreted as the oscillation frequency.

In this chapter we discuss the solution of the characteristic equation for the canonical
problem of high speed, incompressible flow past a circular aperture in a thin wall. Scott
calculated KC(w) for real w for the two extremes of (a) one-sided grazing flow past the
aperture, (b) two-sided flow, where the velocities Uy, U- on each side of the wall are the
same. In case (a) the motion is absolutely unstable, and self-sustained oscillations can
occur; in case (b) the poles of K(w) are in Imw < 0, and the motion is stable. We investigate
the destabilization of the motion of case (b) as U. /U, progressively decreases from one to
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zero by tracking the motion of poles across the real axis into Imw > 0. The results should
provide a valuable building-block for modelling more complicated systems involving isolated
or distributed wall apertures, such as occur, for example, in exhaust mufflers, ventilation
ducting systems, combustion chamber linings, etc.

The basis of the present linear theory is outlined in §2. Detailed numerical results for the
circular aperture are presented in §3 and briefly compared with the analogous predictions
for a square aperture.
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2. CONDUCTIVITY IN THE PRESENCE OF GRAZING FLOW

Consider incompressible, uniform mean flow of fluid of density p, over the upper and
lower surfaces of a rigid plane at z; = 0 containing a circular aperture of radius R whose
center is at the origin of the rectangular coordinates (z1, 2, z3). The mean velocities are at
speeds Uy in the z;-direction respectively in z, Z 0, as in Figure 1. The Reynolds number
is assumed to be sufficiently large that viscosity can be neglected except for its role in
generating vorticity at the sharp edge of the aperture. In the steady state, when U # U_,

the aperture is spanned by a vortex sheet.

Let Q(t) denote the fluid volume flux through the aperture (in the +z,-direction)
produced by the application of uniform, time dependent pressures ps(t) in the vicinity of

the aperture in the upper (z; > 0) and lower (z2 < 0) fluid regions. Then

d *© —iw
2 == [T K@@ s, @] =p-@)-pel),  @1)
where p(w) is the Fourier transform (1/27) [ p.(t)e™!dt, and K(w) is the conductivity
of the aperture (Rayleigh 1870; 1926; Howe et al. 1996).

In a causal representation of the volume flux in terms of py, the path of integration in (2.1)
should strictly pass above all singularities of the integrand. The Fourier transform [p,(w)]
of an arbitrary pressure load of finite duration is a regular function of w. In a real fluid Q(¢)
is finite, and the conductivity K(w) must also be regular. However, when the motion is
modelled in terms of a linearly disturbed vortex sheet, the mechanisms that would normally
suppress unlimited growth of Q(t) are absent, and the predicted motion is characterized
by the appearance of singularities of K(w) in Im w > 0. To calculate the response when
t becomes large and positive, the integration contour must be displaced downwards onto
the real axis and indented to pass around these singularities. The contributions from the

indentations grow exponentially in time, and represent linear theory instabilities.

K(w) can be calculated in closed analytic form for the special case of a rectangular
aperture of large aspect ratio (with its long edges transverse to the mean flow direction), and
it is then easy to show that the singularities are simple poles (Howe 1997). More generally,
the discretization method that must be used to solve the integral equation satisfied by the
vortex sheet displacement strongly suggests that K(w) only has isolated singularities in
the form of simple poles, and this is supported by numerical predictions for an arbitrary,

rectangular aperture, and also by the results presented in this chapter for the circle. The
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residue contributions to (2.1) from poles in Im w >'0 are associated with disturbances
that grow in amplitude as they convect across the aperture in the mean shear layer; their
growth is ultimately suppressed by flow nonlinearities, but experiment (Powell 1961; Holger
et al. 1977; Blake and Powell 1986) indicates that the convection velocity is only very
weakly dependent on amplitude, which implies that the value of Re w at a pole should be a
good approximation to the frequency of a possible self-sustaining periodic motion of finite

amplitude.

The unsteady motion above and below the vortex sheet is assumed to be irrotational.
The pressures at corresponding points on opposite sides of the sheet must be equal, and
the linearized equation satisfied by its displacement ¢ (in the x,-direction) is obtained by
equating the potential flow representations of these pressures at the undisturbed position
(zo = 0) of the sheet. When the motion is induced by the time harmonic pressure difference
[po(w)]e~™*, the displacement ((z1,z3,w)e™* is found to satisfy the following integral
equation (Scott 1995; Howe et al. 1996)

) dmd i i€
Z(m ?73) 711 B 4 M(E)EE + M(E)e 8 =1, JE+ & <1, (2.2)

/ \/ & — —13)?

where the integration is over the area S:1/n? + 72 < 1 of the aperture normalized to unity,
and

pow?R( (1, T3, w) (z1,23)

(51;53) 7T[Po( )] ’ (51753) = R (23)

The functions A;(&3), A2(€3) depend only on the transverse coordinate &3, and are the
nondimensional amplitudes of the Kelvin-Helmholtz waves of frequency w excited at the
semi-circular, upstream edge of the aperture with complex wavenumbers (Lamb 1932)

wR(1 + 1) wR(1 - 9)

— = A 2.4

NEU o 2TU v (24)
The amplitudes are determined by requiring admissible displacements Z(&;,&3) to satisfy the
Kutta condition that the pressure must remain finite at a solid trailing edge (Crighton 1985).

This is equivalent to requiring the vortex sheet to leave the upstream edge tangentially:

07

FE e =0 s ao-T-8 lal<l  (29)

Z(fli 53) - 07

The displacement Z(;,£3) can be calculated from (2.2) and (2.5) for any real or complex
value of w by the collocation procedure originally used by Scott (1995), and refined for
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application to more generally shaped apertures in Chapter 4. The aperture is overlaid by
a mesh of N rectangular integration elements of equal area A with sides parallel to the &
and &3 directions. Within the jth element, Z, A; and A, are assumed to be constant with
Z = Z;. The Kutta condition is imposed by requiring Z; to vanish in those elements that
overlap the upstream edge, and in each contiguous element just downstream. The meshes
can therefore be labelled such that Z; = 0 for 1 < j < 2M for some positive integer M. The
vortex wave amplitudes A (&3), A2(&3) do not vary in the streamwise direction, and there
are accordingly precisely 2M discretized values of these amplitudes which can be assigned
to the first 2M components of an N-dimensional vector Z, say. By setting Z; = Z; for
2M < j < N, and requiring the discretized form of equation (2.2) to be satisfied within
each of the NV mesh elements, the components of Z can then be found from the system of

N linear equations

N
Y CiyZi=1, 1<i<N, (2.6)
j=1

where the N x N matrix Cj; = C;;(w) is known as an entire function of w.
The substitution of the following representation of the time harmonic volume flux

—inR[p,

Qw) = —iw/ ((z1, z3)dz1dzs = Sl /SZ(fl,fs)dfldfs

aperture PoW

into the formula K(w) = ip,w@(w)/[po(w)] then permits the discretized solution to be used
to calculate the conductivity from
N
K(w) = WR/S Z(m,m3)dmdns = tTRA Y Z;. (2.7)

j=2M+1
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3. NUMERICAL RESULTS
3.1 Conductivity for real frequencies

The conductivity of the circular aperture in an ideal, stationary fluid is equal to twice

the aperture radius R. In the presence of flow we write
K =2R{I'(w) — iA(w)}. (3.1)

The imaginary part A(w) governs the direction of the energy exchange between the mean
flow and the unsteady motion in the aperture. The unsteady motions grow by extracting
energy from the mean flow when Im A(w) < 0, and decay through the production of

vorticity in the aperture (which is swept away in the mean flow) when Im A(w) > 0.

Figures 2a - 2f illustrate how the structure of X(w) as a function of the Strouhal number
wR/U, changes as the velocity ratio U_/U, varies between 0 and 1. The curves in Figures
2a and.2f, respectively for one-sided mean flow (U_ = 0) and two sided uniform flow
(U-. = U,), are identical to those computed by Scott (1995) for these cases. As the velocity
ratio U_ /U, gradually decreases from 1 to zero, the quasi-periodic behaviors of I'(w) and
A(w) evident in Figure 2f for large values of wR/U,. are progressively suppressed. Howe
et al. (1996) have shown that the motion for U_ = Uy, is conditionally unstable (Figure
2f) because, for an ideal fluid, there is no mean vortex sheet across the aperture in the
undisturbed state, and the conductivity X(w) is regular in Im(w) > 0, although it has poles
in the lower half plane. The real frequency intervals where A(w) < 0 correspond to forced
inétabz’lities, where energy is extracted from the mean flow providéd the applied pressure
load [p,(w)] # 0. The motion is absolutely unstable when U_ < U, because the vortex sheet
spanning the aperture in the absence of forcing is absolutely unstable. Mathematically, the
instability results from the appearance of one or more poles of X(w) in the upper half plane,
which cross from Imw < 0 as U_ /U, decreases from unity. If a pole crosses the real axis
at w = wy, the conductivity varies very rapidly for real frequencies near w, when the pole is
close to wy, and in particular, there is an abrupt change in the sign of I'(w) near w, (from
negative to positive) when the pole moves into the upper half plane. Thus, in Figure 2d
(U-/U4 = 0.6) a pole lies just below the real axis near w, = 9; the behaviors in Figures 3b
and 3c indicate the presence of poles just above the real axis respectively near w, = 3.2, 5.7.
When U_/U; — +0 all of the poles in the upper half-plane with the exception of that with
the smallest real part (w, ~ 3) are far enough from the real axis to have no significant

effect on the behaviors of I'(w) and A(w) for real w, which now become essentially constant
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for real frequencies when wR/U, > 5. These conclusions agree with the investigation in
Chapter 1 of the rectangular aperture, but will now be justified by a detailed examination

of the poles for the circular aperture.
3.2 Poles of the conductivity

The poles are the eigenvalues of the homogeneous form of the integral equation (2.2), when
the right hand side is replaced by zero, and correspond in the discretized approximation

(2.6) to the roots of the characteristic equation
det C’,-j(w) =0. (32)

However, the calculations were not performed by solving this equation directly, because the
determinant varies too rapidly in the region of complex frequencies of interest, and iterative
schemes for locating the roots (such as the Newton-Raphson method) are unstable. It turns
out to be more convenient to apply Newton-Raphson to determine the complex zeros of
1/K(w), which is computed from (2.7). K(w) has no singularities in Imw > 0 when U_ = U,
(Howe et al. 1996), and the search can be automated by first locating the poles for this case
in Im w < 0 and then tracking their motions in the complex plane, across the real axis, by
decreasing the value of the velocity ratio U_ /U, in small steps. The Argument Principle
(Titchmarsh 1952) can be used to obtain rough approximations to the starting positions
of the poles (as described by Howe 1997), but this is unnecessary in practice because the
poles are initially just below the real axis, and a good approximation to their real parts is
obtained by inspection of Figure 2f (for U_ = U, ), since the poles are responsible for the
oscillatory behavior of K(w), and their respective real parts coincide very approximately

with the minima of I'(w) on the real axis.

This method was used to determine the trajectories of the first four poles to the right
of the imaginary w-axis as U_ /U, decreases from 1 to 0. The marching procedure was
sufficiently stable that, typically, only four iterations were necessary to achieve convergence
to a pole. The greatest accuracy was obtained with a discretization mesh that used a
maximum of 70 x 70 elements to cover the circular aperture. Because the motion is
symmetric about the z;-axis, the calculations are actually performed using 35 spanwise
elements, providing a 70 x 35 covering of half the aperture. In this case about one hour
is required to compute K(w) for a specified complex Strouhal number wR/U,. It was
therefore necessary to compromise between efficiency of calculation and accuracy. A detailed

examination of the convergence of the Newton-Raphson method for different mesh sizes
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and several selected values of U_ /U, indicated, that when a 60 x 30 covering was used, the
poles could be located to within a relative error that in the worst case (for a fourth stage
pole) did not exceed 3%. In this case the time for a single evaluation of K(w) was reduced
to about 20 minutes. The trajectories plotted in Figure 3 were obtained using this grid.
The poles are also tabulated in Table 1.

Real and imaginary parts of wR/U,
U_/U; | Stagel 2 3 4
0.00 | 3.09, 0.56 |4.99, 1.98 | 6.77, 3.47 | 8.50, 4.98
0.05 | 3.12, 0.43|5.10, 1.76 | 6.95, 3.15 | 8.76, 4.58
0.10 3.15, 0.30 [ 5.20, 1.53 | 7.12, 2.84 | 9.01, 4.18
0.15 | 3.19, 0.17|5.30, 1.31| 7.30, 2.53 | 9.26, 3.78
0.20 3.22, 0.04 | 5.41, 1.09| 748, 2.22 | 9.51, 3.39
0.25 | 3.26,-0.08 | 5.51, 0.87 | 7.66, 1.91 | 9.77, 2.99
0.30 3.30,-0.21 | 5.62, 0.65 | 7.84, 1.61 | 10.03, 2.60
0.35 3.34,-0.33 | 5.73, 0.44 | 8.03, 1.31 | 10.29, 2.22
0.40 3.39,-0.44 | 5.85, 0.23 [ 8.21, 1.01 | 10.55, 1.83
0.45 3.44, -0.55 | 5.96, 0.03 | 8.40, 0.72 | 10.81, 1.45
0.50 3.49, -0.66 | 6.08, -0.17 | 8.59, 0.43 | 11.08, 1.08
0.55 3.54, -0.76 | 6.20, -0.37 | 8.79, 0.14 | 11.35, 0.71
0.60 3.59, -0.86 | 6.33,-0.55 | 8.98,-0.13 | 11.62, 0.35
0.65 3.66, -0.95 | 6.45,-0.73 | 9.18,-0.40 | 11.89, -0.01
0.70 3.72,-1.03 | 6.58,-0.90 | 9.38,-0.65 | 12.17, -0.34
0.75 3.79,-1.11 | 6.72,-1.05 | 9.59, -0.89 | 12.45, -0.67
0.80 3.87,-1.18 | 6.86,-1.19 | 9.80, -1.10 | 12.73, -0.97
0.85 3.95,-1.24 | 7.01, -1.31 | 10.02, -1.29 | 13.03, -1.24
0.90 | 4.04,-1.29 | 7.17,-1.40 | 10.25, -1.45 | 13.33, -1.46
095 | 4.14,-1.33 | 7.34,-1.48 | 10.49, -1.56 | 13.64, -1.62
1.00 | 4.24,-1.37 | 7.52, -1.53 | 10.75, -1.62 | 13.98, -1.70

TABLE 1: Poles of K(w) for a circular aperture
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According to the interpretation discussed in §2, when Imw > 0 and L = 2R,
fL/U,; = Re (wR/nU,) should correspond to the Strouhal number of a possible self-
sustaining oscillation of frequency f Hz of the flow over the aperture. This hypothesis

appears to be correct for analogous problems of high Reynolds number flow over shallow

“wall cavities, and for jet-edge interactions (Howe 1997), but experimental data is not

available to support the conjecture for the circular aperture. The solid curves in Figure 4
represent the dependence of fL/U, on the velocity ratio U_/U, predicted on this basis.
The curves represent the first four operating stages and terminate on the right when the

corresponding pole crosses into the lower half of the frequency plane.
3.3 Comparison with the square aperture

In the absence of flow Rayleigh (1870) showed that the conductivity of a square aperture
of side 2s is well approximated by that of a circle of the same area, i.e. of radius
R = 2s/y/m =~ 1.13s. In Chapter 4 we have compared of the conductivities of differently
shaped apertures in the presence of tangential flow for real frequencies. In Figure 5 the pole
trajectories (ws/U,) are plotted for 0 < U_/U; < 1 of the first four operating stages of
the square aperture (calculated by the procedure described above for the circle). The open
circles in this figure are the corresponding poles wR/U, for a circle of radius R = s at the
respective indicated values of the velocity ratio U./U,. By inspection, it is seen that the
real part of a pole for the circle is larger than the corresponding real part for the square.
An examination of the numerical results reveals that their ratio is almost independent of
U_/U4 and of the stage number (at least for the first four stages); and that, to a good
approximation, the Strouhal numbers fL/U for the circle (where L = 2R) are equal to
those of a square whose side exceeds the diameter of the circle by about 6%. The open
squares in Figure 4 are sample Strouhal numbers for such a square (with L =2s) calculated
from the data of Figure 5. The largest Strouhal number shown for the square for each

operating stage coincides with the frequency at which the relevant pole crosses into the

lower half plane.
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4. CONCLUSION

Nominally steady flow past an aperture in a wall is unstable, and under favorable
circumstances the instability is accompanied by the emission of sound at certain discrete
frequencies. The magnitudes of the frequencies and the amplitudes of the motions are
controlled by a feedback loop, whereby periodic shedding of vorticity from the aperture
leading edge is maintained by the interaction of that vorticity with the trailing edge, after
convection across the aperture, and the formation of new vorticity when a pressure pulse
generated by the interaction impinges on the leading edge. The admissible frequencies have
been identified with the real parts of those poles in the upper complex frequency plane of the
Rayleigh conductivity of the aperture. In this chapter the canonical problem of a circular
aperture in a thin rigid wall has been examined in the limit of very high Reynolds number,
when the shear layer over the aperture can be modelled by a vortex sheet separating two
parallel mean flows of generally unequal velocities. The tabulated values of the poles for
the first four operatihg stages of the aperture instability presented in §3 are expected to be

useful in investigations of more complex flow regimes involving flow over a wall containing

one or more circular apertures.




Report No. AM 98-029 Boston University, College of Engineering

REFERENCES
Ahuja, K. K. and Mendoza, J. 1995 NASA Contractor Report 4653: Effects of cavity

dimensions, boundary layer, and temperature on cavity noise with emphasis on

benchmark data to validate computational aeroacoustic codes.

Blake, W. K. and Powell, A. 1986 The development of contemporary views of flow-tone
generation, pp 247 - 325 of Recent Advances in Aeroacoustics (edited by A. Krothapali
and C. A. Smith). Springer.

Bruggeman, J. C. 1987 PhD. Thesis: Flow induced pulsations in pipe systems, Eindhoven
University of Technology.

Bruggeman, J. C., Hirschberg, A., van Dongen, M. E. H., Wijnands, A. P. J. and Gorter,
J. 1989 J. Fluids Eng. 111, 484 - 491. Flow induced pulsations in gas transport

systems: analysis of the influence of closed side branches. -

" Crighton, D. G. 1992 J. Fluid Mech. 234, 361 - 392. The jet edge-tone feedback cycle;
linear theory for the operating stages.

Crighton, D. G. 1985 Ann. Rev. Fluid Mech. 17, 411 - 445. The Kutta condition in

unsteady flow.

East, L. F. 1966 J. Sound Vib. 3, 277 - 287. Aerodynamically induced resonance in

rectangular cavities.

Elder, S. A. 1992 J. Acoust. Soc. Japan (E) 13, 11 - 24. The mechanism of sound

production in organ pipes and cavity resonators.

Hardin, J. C. and Pope, D. S. 1995 AIAA J. 33, 407 - 412. Sound generation by flow

over a two-dimensional cavity.

Heller, H. H. and Bliss, D. B. 1975 AIAA Paper 75-491. The physical mechanism of

flow-induced pressure fluctuations in cavities and concepts for their suppression.

Holger, D. K., Wilson, T. A. and Beavers, G. S. 1977 J. Acoust. Soc. Am. 62, 1116 -
1128. Fluid mechanics of the edgetone.

Howe, M. S., Scott, M. I. and Sipsic, S. R. 1996 Proc. Roy. Soc. Lond. A452, 2303
- 2317. The influence of tangential mean flow on the Rayleigh conductivity of an
aperture.

Howe, M. S. 1997 J. Fluid Mech. 330, 61 - 84. Edge, cavity and aperture tones at very

low Mach numbers.

139



Report No. AM 98-029 Boston University, College of Engineering

Jeng, Y. N. and Payne, U. J. 1995 J. Aircraft 32, 363 - 369. Numerical study of a
supersonic open cavity flow and pressure oscillation control.
|
i
|

Komerath, N. M., Ahuja, K. K. and Chambers, F. W. 1987 AIAA Paper 87-022.

Prediction and measurement of flows over cavities - a survey.

Kriesels, P. C., Peters, M. C. A. M., Hirschberg, A., Wijnands, A. P. J., Iafrati, A.,
Riccardi, G., Piva, R. and Bruggeman, J. C. 1995 J. Sound Vib. 184, 343 - 368. High

amplitude vortex induced pulsations in gas transport systems.
Lamb, H. 1932 Hydrodynamics (6th. ed., reprinted 1994) Cambridge University Press.

Peters, M. C. A. M. 1993 PhD Thesis: Aeroacoustic sources in internal flows, Eindhoven
University of Technology.

Powell, A. 1961 J. Acoust. Soc. Am. 33, 395 - 409. On the edgetone.
Rayleigh, Lord 1870 Phil. Trans. Roy. Soc. Lond. 161, 77 - 118. On the theory of

resonance.

Rayleigh, Lord 1926 Theory of Sound, Vol 2, (Second edition). London: Macmillan and
Co.

Rockwell, D. 1983 AIAA J. 21, 645 - 664. Oscillations of impinging shear layers.

Rossiter, J. E. 1962 Royal Aircraft Establishment Technical Memorandum 754. The
effect of cavities on the buffeting of aircraft.

Scott, M. I. 1995 Master’s thesis: The Rayleigh conductivity of a circular aperture in the

presence of a grazing flow, Boston University.

Tam, C. K. W. and Block, P.'J. W. 1978 J. Fluid Mech. 89, 373 - 399. On the tones and

pressure oscillations induced by flow over rectangular cavities.

Tam, C.-J., Orkwis, P.D., Disimile, P.J. 1996 AIAA J. 34, 2255 - 2260. Algebraic

turbulent model simulations of supersonic open-cavity flow physics.

Titchmarsh, E. C. 1952. Theory of functions (2nd corrected edition). Oxford University

Press.




Report No. AM 98-029

Boston University, College of Engineering

X2

X1

X3 | rigid plane

vortex sheet

Figure 1. Tangential flow over the upper and lower surfaces of a thin rigid plane

with a circular aperture.
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Figure 2. Normalized real and imaginary parts K(w)/2R = T'(w) — iA(w) of the
conductivity of a circular aperture for (a) U_/U; =0, (b) 0.2, (c) 0.4,
(d) 0.6, (e) 0.8, (f) 1.0.




Reporst No. AM 98-029 ~ Boston University, College of Engineering

(d)

A \/
-4 ! ! 1
2 : : :
(e)
I
0.5 | _
~ A N AN
-1 ! | |

OR/U
+

Figure 2. Normalized real and imaginary parts K(w)/2R = ['(w) — iA(w) of the
conductivity of a circular aperture for (a) U-/U, =0, (b) 0.2, (c) 0.4,
(d) 0.6, (e) 0.8, (f) 1.0. |




Report No. AM 98-029 Boston University, College of Engineering

Im(wR/U, )
(\]
l

I N N N
2 4 6 8 10 12 14

Re(wR/U, )

Figure 3. Calculated trajectories of the the first four poles of K(w) for a circular
aperture for 0 < U_/U, < 1.
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Figure 4. Strouhal numbers fL/U, = Re(wR/nU,) of the first four operating stages
for a circular aperture; the squares are corresponding predictions for a

square aperture whose side is 6% larger than the diameter of the circular

aperture.

145



Report No. AM 98-029 ' Boston University, College of Engineering

o
2 - o
0
o
o

Im(ws/U, )

R

L R I B R T I B .
2 4 6 8 10 12 14

Re(ws/U, )

Figure 5. Calculated trajectories of the the first four poles of K(w) for a square
aperture of side 2s for 0 < U_/U, < 1. Each open circle represents the
pole for a circular aperture of radius s corresponding to the respective
indicated values of U_/U,.
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CHAPTER 6
EXPERIMENTAL INVESTIGATION OF THE DAMPING OF
STRUCTURAL VIBRATIONS BY VORTICITY PRODUCTION

P. M. Maung, M. S. Howe
and G. H. McKinley
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SUMMARY

An experimental investigation has been made of the damping of a plate vibrating at
zero angle of attack to a nominally steady, high Reynolds number mean flow. The plate is
perforated with a distribution of small circular apertures in which vorticity is produced by
the unsteady loading of the plate. The kinetic energy of the vorticity is swept downstream
by the flow. Damping occurs by the transfer of energy from the plate to the vortex field
provided the Strouhal number wR/U, based on the radian frequency w of the vibration,
the aperture radius R and the mean stream velocity U, lies between about 0.4 and 0.8.
The peak attenuation is of the order of 5 dB relative to an identical unperforated plate.
The results are interpreted in terms of recent calculations of the unsteady flow through an
aperture in the presence of mean flow, and are expected to be relevant to the alleviation of

fatigue failure of aerodynamic control surfaces such as jet nozzle flaps.
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1. INTRODUCTION

Vorticity is produced by a vibrating solid surface. The rate of production is greatest
where the pressure and velocity in the fluid change rapidly, such as at corners and sharp
edges. For certain conditions the kinetic energy of the vortex flow is derived from the work
done on the fluid by the moving surface, and there is an irreversible transfer of energy to
the fluid. The mechanism is very similar to that involved in the cgnversion of acoustic

energy into vortical kinetic energy when sound causes vorticity production at an edge:

vorticity diffuses from the edge by viscous action and the sound is damped [1 - 3]. If the

fluid is at rest relative to the surface the dissipation is caused by the nonlinear convection
of vorticity from the surface and subsequent thermoviscous damping, both of which are
weak because the growth of vorticity of one sign (and, therefore, of substantial levels of
vortical kinetic energy) tends to be inhibited when the motion is periodic. In the acoustic
case it is known [4 - 16] that the damping can be greatly increased by the presence of a high
Reynolds number mean flow. Viscosity is now important only very close to an edge, where
vorticity diffuses from the surface and is then swept away by the flow, its kinetic energy
being permanently lost by the sound.-

Practical devices for attenuating sound by this means usually involve bias or grazing
flow perforated screens. In the bias flow case a mean pressure difference is maintained
across the screen producing a steady flow through the apertures. Damping is caused by the
modulation of vorticity production in the mean jet flows through the apertures by impinging
sound [6, 7, 12, 14 - 16]. A grazing flow screen works in a similar way: unsteady motion
produced by the sound in the apertures generates vorticity which is convected downstream
by the tangential flow over the screen. High acoustic intensities are usually accompanied by
significant structural vibrations, and since near field (non-acoustic) pressure fluctuations
produced by a vibrating body can also modulate vorticity production, it is likely that
the vibrations of a perforated structure are also damped by vorticity production. This
possibility has been confirmed theoretically {17, 18] for bending waves on a bias flow
elastic plate, or when a bending wave impinges on the edge of a plate in the presence
of a tangential mean flow. These studies indicated that the damping can be comparable
with that normally achieved by heavily coating the vibrating plate with an elastomeric
damping material. The efficiency of damping by the bias flow screen can be optimized for
any particular frequency by adjusting the bias flow speed in the perforates. This is not

generally possible for perforated screens in a tangential flow environment. Either of these
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configurations, however, provides a possible mechanism for suppressing the large amplitude
vibrations induced in practical flow control devices by large scale flow instabilities, such as
those experienced by the jet engine external nozzle flaps of certain military aircraft [19 -
21].

In this chapter we describe the results of an experimental investigation aimed at
assessing the likely magnitudes of the structural damping that can be achieved by vorticity
production. The case considered here is of damping by the passive production of vorticity
in the apertures of a perforated plate which vibrates while immersed in a water channel
in the presence of a tangential mean flow of speed U = 1 m/s. Vibration damping
measurements were made using several cantilevered, thin steel plates homogeneously
perforated with circular apertures of radius R = % inch and with respective fractional open
areas a = 0.0135, 0.03, 0.05 and 0.1. In all of these cases maximum damping of up to
5 dB (relative to an identical unperforated plate with the same vibrational input power)
was obtained at a Strouhal number wR/U between about 0.4 and 0.8, where w denotes
the radian frequency of vibration. Intervals of negative damping were observed at higher
Strouhal numbers; in such cases the forced vibrations of the plate are augmented by energy
extracted from the mean flow. These conclusions are consistent with elementary analytical
models of the hydrodynamics of the unsteady aperture motions in the presence of mean
flow [22 - 24], in which the mean shear layer across an aperture is modeled by a vortex

sheet, but it is not clear to what extent these models are applicable in the present case.

These simple models are discussed in §2. The experimental set-up and the test procedure
are described in §3, and damping measurements are reported in §4. The experimental
results are discussed for several fractional open areas, with greatest attention given to the
case a = 0.0135, which is likely to be the most relevant in applications, where only small
fractional open area ratios are likely to be acceptable.
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2. THEORETICAL BACKGROUND

Consider a thin plate containing a circular aperture (of radius R) vibrating normal to its
surface with small amplitude at radian frequency w (with time dependence o e~t) in the
presence of a grazing mean flow in the z;-direction (Figure 1). In the general case the mean
velocities U, respectively above and below the plate will be different, and in the absence of
oscillations there will be a mean shear layer across the plane of the aperture. The periodic
motion of the plate produces uniform, mean pressures p.e~** on the upper and lower faces
of the plate, as a result of which fluid is forced through the aperture at a volume flux rate
Qe (in the positive zo-direction in the figure) given by

— K(w)lp+ — p-]
1P,W

Q ) (1)

where p, is the mean fluid density, and the frequency dependent coefficient K is the Rayleigh
conductivity of the aperture. In the absence of mean flow in an ideal fluid the value of K
depends only on the shape of the aperture and the thickness of the plate. For a circular

aperture in a plate of infinitesimal thickness K = 2R.

Because of the tangential motion, vorticity is shed from the edge of the aperture and
carried downstream by the mean flow. This implies that there is an exchange of energy
between the fluid and the vibrating plate, and that K is now a compler function of the

frequency w, which is usually expressed in the form
K (w) = 2R(T'(w) — iA(w)), (2)

where I' and A are real. If II denotes the rate of transfer of energy from the plate to the
fluid then [18]
1= —I{KW}ps —p-|* _ RAW)lp+ —p-I*
2pow PoW
which is positive provided A(w) > 0 (for w > 0).

: (3)

Figure 2 illustrates the dependencies of I and A on the Strouhal number wR/U calculated
by Scott [22] for an aperture in a plate of zero thickness in the two extreme cases of (i)
one-sided flow, U, = U, U_- =0, and (ii) two-sided uniform flow, U; = U_ = U. According
to equation (3), in the intervals where A > 0 vibrational energy is transferred to the fluid.
For one sided flow this occurs at Strouhal numbers less than about 2; for two sided, uniform
flow it occurs over a large number of discrete frequency intervals. In obtaining these results,

Scott considered the extreme limit of infinite Reynolds number, when the mean shear layer
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across the aperture could be modeled by a vorter sheet which was linearly perturbed by

motion of the plate.

In the experiments considered in this chapter, the vibrating plate is immersed in water
at zero mean angle of attack to a nominally uniform mean flow. Thus, it might be expected
that case (ii) of Figure 2 would provide an appropriate model for interpreting the exchange
of energy between the plate and the flow. However, it turns out that this two sided-flow
model is valid only for plates of very small thickness compared to the aperture radius R.
Although numerical predictions of K(w) for a circular aperture in a thick plate are not
available, it was seen in Chapter 1 that, apart from a change of scale on the frequency axis,
the results shown Figure 2 are also applicable to a rectangular aperture. However, it is also
shown in Chapter 1 that for two-sided uniform flow over a rectangular aperture in a plate of
moderate thickness, the frequency dependence of the conductivity is actually more like case
(i) of Figure 2 (one sided flow). This is illustrated in Figure 3 for a rectangular aperture of
length 2s and breadth 4s (out of the plane of the paper) in a plate of thickness A = 0.2s.
The reason for this critical dependence on thickness is easily understood. For a plate of zero
thickness in a uniform mean flow, there is no mean shear layer (vortex sheet) across the
aperture in the limit of infinite Reynolds number, and the undisturbed motion is therefore
stable. For finite thickness, however, a vortex sheet will span each face of the aperture,
as indicated in the upper part of Figure 3, thereby making the aperture motion unstable.
Numerical results discussed in Chapter 1 indicate that the unstable motion becomes similar

to that for one-sided flow when the plate thickness exceeds about one tenth of the aperture

diameter.
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3. DESCRIPTION OF THE EXPERIMENT
3.1 Apparatus

The experiment was conducted in the 20 ft long low speed water channel at Harvard
University. The channel is 1.5 ft wide and 3 ft high, and the water depth is about 6.75
inches at the maximum flow rate of approximately 100 gallons per minute, corresponding
to a mean stream speed U = 0.8 — 0.85 m/s. This velocity was measured directly by

observation of particle traces on the surface of the water.

The experiments were performed using a set of interchangeable unperforated and
perforated rectangular steel plates aligned at zero mean angle of attack to the flow. The
plates are of thickness 35 inches and have span 11 inches (transverse to the flow direction) and
chord 6 inches. The perforated plates had fractional open areas o = 0.0135, 0.03, 0.05 0.1,
and were formed by drilling a uniform distribution of circular apertures of radius R = -}g
inches. Each test plate is cantilevered about its leading edge, along which it is bolted to a
% inches thick, horizontal steel bar placed within the water flow at a depth that could be
varied between 1.75 — 4.25 inches, the bar being strong enough to prevent twisting during

plate vibration.

A Ling Dynamic System V203 shaker was mounted on a rigid support above the plate
and connected to the midspan of the plate near the trailing edge by a % inch diameter
vertical aluminum connecting rod. A Tektroniz CFG253 function generator was used to
drive the shaker at prescribed values of the radian frequency w. The connecting rod is
rigidly attached to the plate, whose motion at the point of attachment could therefore
be measured by means of a high sensitivity accelerometer (Kistler 863485) mounted on
the rod above the water level. This was checked in the absence of water by operating the
shaker at fixed input frequency and amplitude and comparing accelerometer readings when
mounted on the connecting rod and when mounted directly on the plate. A PC-based
data acquisition system was used to store simultaneous measurements of the accelerometer
output a(t), and the voltage V'(t) and current I(t) delivered to the shaker. The arrangement
is illustrated schematically in Figure 4, and described in greater detail in [21].

3.2 Procedure

The mean flow speed was maintained steady in the range U = 0.8 — 0.85 m/s, and the
shaker was driven sinusoidally at selected frequencies f = w/27 between 10 and 90 Hz.

Over this range the Strouhal number S = wR/U varies from 0.2 to 2.15, where, according to
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Figures 2 and 3, vorticity production is expected to provide a significant level of vibration
damping.

Spectral analysis of the accelerometer readings indicates that the response of the plate is
perfectly sinusoidal except at the lower end of the frequency range and a few other selected
points. Even at these exceptional points, however, the signal is nearly sinusoidal with some
added noise distortions (see Figures 5 and 6). The plate displacement u(t) as a function of
time can be calculated from the accelerometer readings by integration of the formula

2
o = al) (@
This was done numerically using a trapezoidal procedure and 1024 data points sampled
over a three period duration. This time period was found to be large enough to provide a

stable frequency spectrum, with adequate low frequency resolution.

The current and voltage delivered to the shaker were analyzed in a similar manner. When
conditions vary sinusoidally, the power delivered to the shaker is the product of the voltage

V(t) = v, cos(wt) and current I(t) = I cos(wt + ¢), and the average power II is given by
II= vof cos ¢. (5)

The voltage was measured across the electrical leads coming out of the shaker. The current

I(t) was determined from Ohm’s law and the measured voltage drop across a 12 resistor

placed in series. Instead of assuming perfectly sinusoidal variations, and using equation (5),

the average power was calculated from the actual sampled values of V(¢t), I(t) over a three

period interval by means of the formula

£ V() (1) At 6
Xn At ’

where At is the interval between successive sampling times ¢,,. This method of computation

II =

minimizes the influence of random fluctuations present in the peak to peak measurements.

The plate and the connecting rod to the shaker may be regarded as a linear system
executing forced oscillations at frequency w. The total power dissipated per unit input
power to the shaker is proportional to the ratio uf,/ I1,, where the subscript bp refers to values
for the perforated plate, and ug is the mean square displacement of the plate. The damping
of the coupled plate-shaker system afforded by vorticity production in the perforates is

therefore determined b 2
g y 10 x logy, (% %’i) dB (7)

P
where the subscript o refers to the unperforated plate.
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4. EXPERIMENTAL RESULTS

To assess the importance of vibration amplitude on damping, measurements were made
at two different voltage input amplitudes, v,, to the shaker of 124 mV and 174 mV
(corresponding, practically, to a doubling of the input power at the higher voltage), which
could be held stable throughout the whole range of test frequencies. It will be seen from the
results that the input amplitude has only a minor influence on the measured damping. The
input frequency was varied over the range 10 < w/27 < 90 Hz in increments of 2 to 5 Hz.
Smaller increments were used where significant damping was observed. For each frequency
the measured displacement of the plate at the trailing edge (u) and the average input
power II were measured during four different experimental runs to ensure repeatability
and consistency of the measurements. The mean values of these results were then used to
compute the damping. For a given fractional open area, the shaker input voltage amplitude
v, was constant to within £3%, while the current varied with the driving frequency f. The
accuracy of the power measurements was confirmed by direct comparison with performance
characteristics supplied by the shaker manufacturer. As an additional precaution to ensure.
the validity and consistency of the measurements, a second test was conducted after an
interval of a few days, and additional checks (described below) were performed for the plate

with the smallest fractional open area of 1.35%.
4.1 The 1.35% perforated plate

The most extensive tests were conducted on the 1.35% perforated plate. Four separate
tests were performed, each involving the measurement of the displacement and average
input power on eight separate occasions with the same flow velocity U, frequency f and
input voltage amplitude v,. The flow velocity and frequency variables were reset before
each test, and all of the measurements were performed within a two week time frame. The
measured power and displacement signals were stable over the entire frequency range, and
spectral analysis revealed that the shaker current and voltage remained sinusoidal at all
measurement points. The stability of the signal is demonstrated in Figure 5a and Figure
6a, which show digitized sample readings of I(t) and V/(¢) for two different frequencies. The
accelerometer readings contain a broader spectrum of frequencies, however. The distortion
(non-sinusoidal response) of the plate motion was negligible except at very low frequencies.
Figure 5a shows conditions at f = 38 Hz, where the the input voltage, current and the
acceleration are all sinusoidal; the acceleration frequency spectrum shown in Figure 5b is

dominated by this frequency. This is the case for the majority of the measured frequencies.

155




Report No. AM 98-029 Boston University, College of Engineering

However, at low frequencies, such as that illustrated in Figure 6 for f = 10 Hz, the
essentially sinusoidal response of the plate is contaminated by high frequency noise. The
acceleration spectrum (Figure 6b) is still dominated by the peak at 10 Hz, however, which
is about 20 dB above the noise. A comparison of the accelerometer measurements for the
perforated and unperforated plates reveals that the noise level in the displacement readings
is mainly a function of frequency and is not significantly dependent on the fractional open

area.

The damping (calculated from the definition (7)) for & = 0.0135 is plotted in Figure 7 as
a function of the aperture Strouhal number wR/U for the two different peak input voltages
Uo = 124 and v, = 174 mV. The two results differ in detail, but are similar in overall
appearance, confirming that in a first approximation the vibrating system may be treated
as a linear oscillator. An error analysis, taking account of both precision and bias errors
[24], was conducted on the damping comparison variables and the estimated uncertainties
in the measured results are indicated by the error bars in the Figure. Thus, for all practical
purposes the results for the two input voltages may be regarded as essentially identical, as

expected for a linear system.

Since the ratio plate thickness/aperture diameter = h/2R = 0.125 > 0.1, it might be
expected that the frequency dependence of the attenuation would be similar to that shown
in Figure 3. However, the results of Figure 7 are more like those shown in Figure 2ii for
two-sided flow past an aperture in a plate of infinitesimal thickness. But the similarity is
only qualitative, the observed frequency intervals of positive damping being much smaller.
In the Strouhal number 0.4 < S < 0.8 the attenuation is typically about 3 dB, and attains
a maximum of 5.7 dB at S = 0.7.

The anomalously large damping which occurs in Figure 7 near S = 2 is believed to
be associated with a resonance of the structural support at f ~ 85 Hz, since it occurs
where the plate displacement is very small. To check this the test was repeated after first
sealing the apertures with tape. If the tape can be regarded as effectively rigid there should
be no damping due to the presence of the apertures, but any anomalies at a structural
resonance are still likely to be present. Figure 8 compares the measured attenuations for
the perforated and taped plates. Taping the apertures is seen to effectively eliminate the
measured damping over most of the frequency range, except at the high frequencies. The
small, but finite damping at lower frequencies for the taped plate can be attributed to the

interaction of flexural motions of the tape over the apertures with the flow. It may therefore
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be concluded that, except for high frequencies, say f > 50 Hz, vorticity production in the
perforates is the major source of damping when comparing the measured responses of the

perforated and unperforated plate.
4.2 Dependence of damping on fractional open area

Figures 9 - 11 illustrate the damping measured for plates with fractional open areas
o = 0.03, 0.05 and 0.10 respectively. The results are quantitatively similar to those
discussed above for o = 0.0135, however the low Strouhal number interval of significant
damping progressively decreases in width as a increases, and the system exhibits “negative
damping“ over most of the low frequency domain, i.e., the oscillations are amplified by

vorticity production.

The average damping for the 3% perforated plate is about 3 dB and occurs over the
range 0.7 < S < 0.9, which is much narrower that for the 1.35% plate. In this interval a
peak attenuation of about 5.5 dB occurs at S = 0.8, corresponding to f = 33 Hz. The very
large measured damping in the region S > 1.5 must again.be attributed to a structural
resonance. Similar comments apply to the 5% perforated plate. The low frequency region

of damping occurs in the range 0.5 < S < 0.8, with a maximum of 5.2dB at S =~ 0.7.

For the plate with the highest open area ratio of 10%, figure 11 shows that the low
Strouhal number interval of positive damping is now confined to the very small range
0.7 < S < 0.8, and the maximum damping is 4 dB. For most frequencies the plate is
negatively damped. This suggests that the large fractional open area the plate has a
significant influence on the mechanical stiffness of the plate, causing it to exhibit a complex
mode of deflection that is basically destabilized by the presence of the apertures. When
the fractional open area is as large as 10% the plate no longer behaves as a simple forced
oscillator with one degree of freedom. A progressive increase in open area causes a gradual
reduction in plate stiffness, which ultimately allows the plate to vibrate in more complex
manner than the envisaged simple cantilever mode discussed above, thereby introducing

phase differences between the fluid structure interactions at different apertures.
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5. CONCLUSION

In this chapter we have described an experiment in which the production of vorticity
within the apertures of a vibrating plate immersed in a mean flow has resulted in a net
exchange of energy between the flow and the vibrating plate. When vibration damping
occurs the kinetic energy of the vorticity is supplied by the plate and swept away by
the mean flow. The present experiment relies on the passive production of vorticity, and |
accordingly exhibits ranges of Strouhal numbers (based on mean flow velocity and aperture

radius) where the damping can be negative.

Our results for vibrating steel plates in a water channel show that passive vorticity
production in the perforates of a vibrating perforated plate can cause significant vibration
damping (5 dB or more) for Strouhal numbers in the range 0.4 to 0.8. The width
of this Strouhal number range decreases with increasing fractional open area; for the
perforated plates studied here the broadest band of attenuation frequencies was obtained
for an fractional open area of 1.35%. The solid curve in Figure 12 represents a “best
fit” approximation to all of the data in this low Strouhal number range for this plate

configuration.

The results give encouraging support to the possibility of controlling or suppressing
unwanted vibrations of a structure in a mean flow by introducing a modest degree of
surface perforations where vorticity production can occur. The passive vorticity generation
configuration examined in this chapter provides little or no control of the frequency at which
the damping is maximal. However, the same mechanism is responsible for damping by
vorticity production in the apertures through which a mean flow is maintained by “blowing”
or “suction”. For such an arrangement the “bias flow” velocity within an aperture can be
adjusted to optimize damping at any desired frequency. Non-passive devices of this kind

are known to be very effective in the damping of sound.
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- Figure 1. Tangential mean flow past a circular aperture in a vibrating plate.
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at a shaker frequency of 38 Hz.
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Figure 7. Measured damping (dB) of the 1.35% perforated plate for v, = 124 and
174 mV.
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Figure 12. “Best fit” representation of the damping of the 1.35% perforated plate.

172




Report No. AM-98-029 Boston University, College of Engineering

CHAPTER 7

DAMPING OF FLAP VIBRATIONS INDUCED BY A TURBULENT WAKE

P. M. Maung and M. S. Howe
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SUMMARY

An experimental investigation is being made of the damping of flow-induced vibrations
by the controlled production of vorticity by a vibrating body. This is done by suitably
perforating all or part of the vibrating structure, and forcing the mean flow to pass either
through or over the perforates. It is hypothesized that the kinetic energy of the vortex
flow is derived from the vibrating body. A proof of principle test designed to establish the
feasibility of the damping mechanism and to yield estimates of the amount of attenuation
likely to be obtained in practice was described in Chapter 6. In this chapter an outline
description is given of experiments currently being performed using a perforated flap excited
by a large scale vortex flow in a wind tunnel; measurements are being made of the vibration

damping achieved by vorticity production stimulated by blowing through surface apertures.
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1. INTRODUCTION

Aircraft such as the B-1B and F15 are configured with twin engine nacelles, and both have
suffered premature failure of external nozzle engine flaps caused by high dynamic pressures.
Model tests [1] confirm that the highest dynamic pressures occur where structural damage
is observed on full scale aircraft, principally between the nozzles of the twin nacelles.
Seiner et al [2] have correlated these high pressures with jet screech tones produced by
the interaction of turbulence with shock waves in the supersonic jet plumes. In particular,
intense surface pressures apparently correspond to a dynamic coupling of the neighboring
plumes, a common feature of parallel jets whose separation is less than about four or five jet
diameters [3 - 5]. However, more recent wind tunnel tests [6, 7] suggest that the supersonic
plume resonance is only important at low flight Mach numbers, typically less than about
0.5. At higher flight speeds the pressures are attributable to large-scale vortex structures
impinging from the aircraft forebody. In practice the dominant mechanism is determined
by flight profile and aircraft configuration. The jet plume resonance can be eliminated by
inserting tabs into the nozzle flow or, more effectively, by means of a small supersonic jet
tube within the nozzle 7], but there is currently no effective means of controlling the vortex

dominated pressures.

2. THE WIND TUNNEL TEST

Theoretical arguments presented Chapters 1 - 5 of this report suggest that significant
damping of structural vibrations is possible by increasing the rate of production of vorticity
by a vibrating body. It is known that this mechanism greatly increases the damping of
sound waves incident on a perforated screen: the presence of a mean flow through the
perforates gives enhanced damping when vorticity, energized at the expense of the sound,
is convected downstream. Appropriately “tuned” devices of this kind have been shown to
absorb practically all of the incident sound [8]. Since the production of vorticity in the
apertures by sound can be simulated by vibrating the screen, it is postulated that the same

mechanism will strongly attenuate structural vibrations.

To examine this hypothesis a proof of principle test was first performed in which the
vibration damping of a perforated elastic plate immersed a in mean stream is compared
to damping in the absence of perforations. This test has been performed in an open

water channel (see Chapter 6), where the flow velocity is small and conditions can be
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carefully controlled; the heavy fluid loading of water is analogous to the high dynamic loads

encountered in high speed flow in air.

The experimental work is currently being extended to situations more relevant to

Air Force needs. A porous airfoil (the ‘flap’ of Figure 1) is elastically supported in the
wind tunnel at Harvard University; the natural frequency of vibration can be ‘tuned’ by
adjustment of the supporting sting. The airfoil is mounted close to or within the vortex wake
of a cylinder which excites it into vibration. This configuration models the excitation of an
engine nozzle flap by vorticity swept over the flap from an aircraft forebody. The vibration
damping achieved by ‘blowing’ air through the surface perforates is being investigated.
By proper adjustment of the perforate size and bias flow (‘blowing’) velocity, it should be
possible to tune the optimum damping to selected frequencies that characterise forcing by

the turbulent wake.

These tests are currently in progress and the results are expected to be documented
towards the end of 1998.
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